

A Visual Analytics Framework for Reviewing **Streaming Performance Data**

Suraj P. Kesavan¹, Takanori Fujiwara¹, Jianping Kelvin Li¹, Caitlin Ross², Misbah Mubarak³, Christopher D. Carothers², Robert R. Ross³, Kwan-Liu Ma¹

> University of California, Davis, USA¹ Rensselaer Polytechnic Institute, Troy, USA² Argonne National Laboratory, Chicago, USA³

Performance Analysis of Large-Scale Scientific Simulations

Maximize Utilization

of Resources

Post-Hoc data analysis workflow

Unviable for high **volume** and **variety**

Performance Data

Ensure Performance

Efficiency

In-Situ data analysis workflow

In-situ Performance Analysis for HPC is challenging.

Data Streams Complexity

Multiple performance metrics (heterogeneous) are collected from multiple compute nodes.

Active Monitoring

Key changes and patterns can occur anytime.

Situational Awareness

Heterogeneous data streams make it difficult to understand causal relationships.

Contributions

Build a **progressive visual analytic framework** that helps perform real-time analysis of streaming performance metrics and communication data **Data Management Module**

• Handle **high volume** and **velocity** HPC streaming data.

Analysis Module

- Identify similarities and (dis)similarities from temporal behavior patterns.
- Detect **key changes** that deviate from a baseline behavior.
- Derive **causal relationships** among performance metrics.

Visualization Module

- Enable users to analyze the performance metrics **interactively**.
- Provide visualizations to analyze communication data along with performance behaviors.

4

Related Work

Performance of large-scale networks in Supercomputing systems [Aaditya et. al, 2012; Fujiwara et. al, 2018]

Progressive Visual Analytics Approximate-tSNE [Pezzotti et. al, 2017]

Characteristics of HPC Performance Data

Data Management module

Analysis Module: Identify similarities among temporal behaviors.

Analysis Module: Consistent Cluster Assignment.

cluster 1

Analysis Module: Identify (dis)similarities among temporal behaviors.

Progressive Dimensionality Reduction (IPCA by [Ross et al., 2008])

Without the Procrustes Transformation

10

With the Procrustes Transformation

Analysis Module: Detect key changes that deviate from a baseline behavior. ¹¹

Change Point Detection using Adaptive Estimation with Forgetting Factor (AFF)

Representative time series D_t [Qahtan et. al., 2015]

PCA cannot update the PC in real-time Minimal number of parameters to be specified

Significance level $\alpha = 0.01$

Analysis Module: Detect key changes that deviate from a baseline behavior.

12

Analysis Module: Derive causal relations among performance metrics.

Granger causality test provides whether a Granger causality between two time series with p-value.

"A time series X_t causes another time series Y_t, if present Y can be predicted better by using past values of X than by not doing so"

Granger's causality cannot measure how much one time series affects another time series

Impulse Response function (IR) determines how much shock to a variable of interest can affect other variables.

Variance Decomposition (VD) determines the contribution of a shock to the variance of the forecast error of other variables.

Vector Autoregression (VAR) model [Hamilton, 1994]

13

Visualization Module: System overview

Performance behavior view

Behavior Similarity view

Primary Metric Secondary Metric

Progressive DR results are projected onto a 2D scatterplot.

Points are positioned based on the results from their PC1 and PC2.

Colored by the cluster IDs calculated by Progressive time-series clustering.

Visualizing primary and secondary metric side—by-side allows the HPC expert to compare two metrics at a time.

Communication views

Communication views

Causality view

From Causality

Effects from other metrics on the metric of interest

Causality view (From)				
Metric	IR ¢	VD ‡		
Net. Send.	7.90	0.09		
Prim. Rb.	-46.15	0.04		
Net. Recv.	20.04	0.02		
Num. Events	-85.05	0.19		
Sec. Rb.	116.22	0.64		

To Causality

Effect of metric of interest on other metrics

	Causality view (To)			
	Metric	IR ¢	VD ‡	
p-value < 0.5	Net. Recv.	-237.75	0.00	
	Net. Send.	453.22	0.02	
	Num. Events	159.21	0.00	
	Sec. Rb.	86.05	0.72	
	Prim. Rb.	626.25	0.10	

Case Study: Parallel Discrete-Event Simulation (PDES)

System

Theta at Argonne National Laboratory with the CODES network simulation toolkit [Cope et al., 2011] run with 864 routers.

Rensselaer's Optimistic Simulation System (ROSS)

Number of PEs: 8 Number of KPs: 128 Number of LPs (entities): 16384

Application

AMG solver application [Yang et al., 2002]

Metrics

Secondary rollback: The number of rollbacks on a KP caused by an cancellation message. Network Sends (Net. Send.): The number of events sent by LPs over the network. Last Global Virtual Time (Last GVT.): sampling interval in virtual time

Case Study: Monitoring Key Changes in PDES Performance

Case Study: Tracing Performance Bottlenecks

Case Study: Analyzing Communication Patterns

Visualize PE level communications

Show KPs belonging to green cluster

Limitations and Future Work

Latency

- For extremely short sampling rate, the progressive algorithms could not provide useful intermediate results because of limited number of entities.
- Visualizations can keep updating too frequently, whereby following the patterns becomes more challenging.

Controlling the frequency of updates in the data management module.

Scalability

 Current implementation supports limited number of metrics (< 20 metrics) and number of entities (< 10,000 entities) that can be processed.

Aggregating multiple metrics based on similarity

Comparison

 Our framework can only allow comparison of 2 selected metrics (side-by-side views) and communication matrices (diff-communication views).

Tracking the performance metrics through animated overviews.

Questions?

Mail: spkesavan@ucdavis.edu Website: CODES-VIS http://vis.cs.ucdavis.edu/codes-vis/

This research has been supported by U.S. Department of Energy through grant DE-SC0014917.

