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Performance Analysis of Large-Scale Scientific Simulations

HPC compute nodes Post-Hoc data analysis workflow
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In-situ Performance Analysis for HPC is challenging.

Data Streams Complexity
Multiple performance metrics (heterogeneous) are collected from multiple compute nodes.

Active Monitoring
Key changes and patterns can occur anytime.

Situational Awareness
Heterogeneous data streams make it difficult to understand causal relationships.



Contributions

Build a progressive visual analytic framework that helps perform real-time analysis of
streaming performance metrics and communication data

Data Management Module

* Handle high volume and velocity HPC streaming data.

Analysis Module

* |dentify similarities and (dis)similarities from temporal behavior patterns.
* Detect key changes that deviate from a baseline behavior.
e Derive causal relationships among performance metrics.

Visualization Module

* Enable users to analyze the performance metrics interactively.
* Provide visualizations to analyze communication data along with performance behaviors.



Related Work

Performance of large-scale networks in Supercomputing systems
[Aaditya et. al, 2012; Fujiwara et. al, 2018]

No support for
streaming data

Progressive Visual Analytics
Approximate-tSNE [Pezzotti et. al, 2017]
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Characteristics of HPC Performance Data

Communication Multivariate

HPC
Visualization
Framework

Temporal

]



HPC system

Data Management module

Backend server

Compute node
In-situ data ] stream
processing J
o
. S
<
(:}‘

Compute node

In-situ data
processing

\_

4 )
Data integration
1\ l J
4 v
Analytical
processing ¥

J

Web browser client

y

5\,

4
<

4 )
#  Progressive and
Interactive
/1 Visualization
\_ Y,




1500 -

]
S

# of secondary rollbacks

750 -

500 4

Analysis Module: Identify similarities among temporal behaviors.

Sustain active monitoring

Mini-batch
K-means
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Enable situational awareness
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This handles latency issue.
“m” entities (m << n) are randomly
selected to create “k” clusters.
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Analysis Module: Identify (dis)similarities among temporal behaviors. *

t=15

Subcluster

Outlier

Progressive Dimensionality Reduction (IPCA by [Ross et al., 2008])
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Analysis Module: Detect key changes that deviate from a baseline behavior. "

Change Point Detection using Adaptive Estimation with Forgetting Factor (AFF)

Representative time series D;

Significance level a = 0.01
[Qahtan et. al., 2015]

[Bodenham and Adams, 2017]

AFF
/\/\,\/\/\
PCA cannot Minimal number
update the PCin of parameters to
real-time be specified




Analysis Module: Detect key changes that deviate from a baseline behavior.
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Analysis Module: Derive causal relations among performance metrics. *“

Granger causality test provides whether a Granger causality between two time series with p-value.

“A time series X; causes another time series Y, if present Y can be predicted better by using past values of X than by
not doing so”

Granger’s causality cannot measure how much one
time series affects another time series

Impulse Response function (IR) determines how much shock to a variable of interest can affect other variables.

Variance Decomposition (VD) determines the contribution of a shock to the variance of the forecast error of other
variables.

Vector Autoregression (VAR) model [Hamilton, 1994]

VAR fitting is computationally expensive (O(d?))
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Visualization Module: System overview :
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Performance behavior view

@ Cluster-2 (48)

® Cluster-1 (64)

Cluster-0 (16)
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Behavior Similarity view

Progressive DR results are projected onto a 2D scatterplot.

Points are positioned based on the results from their PC1 and PC2.

Colored by the cluster IDs calculated by Progressive time-series clustering.

Visualizing primary and secondary metric side—by-side allows the HPC
expert to compare two metrics at a time.
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Communication views

Live communication matrix
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Communication views e

Performance Behavior view @ Cluster-0 (16) ©® cluster-1 (48) © Cluster-2 (64)
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From Causality

Causality view

Effects from other metrics on the metric of interest

Causality view (From)

Metric IR VD
Net. Send. 7.90 0.09
Prim. Rb. -46.15 0.04
Net. Recv. 20.04 0.02
Num. Events -85.05 0.19
Sec. Rb. 116.22 0.64

p-value < 0.5

To Causality

Effect of metric of interest on other metrics

Metric IR VD
Net. Recv. -237.75 0.00
Net. Send. 453.22 0.02
Num. Events 159.21 0.00

Sec. Rb. 86.05 0.72
Prim. Rb. 626.25 0.10
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Case Study: Parallel Discrete-Event Simulation (PDES) v

System

Theta at Argonne National Laboratory with the CODES network simulation toolkit [Cope
et al., 2011] run with 864 routers.

Rensselaer’s Optimistic Simulation System (ROSS)
Number of PEs: 8

Number of KPs: 128
Number of LPs (entities): 16384

Application
AMG solver application [Yang et al., 2002]

Metrics
Secondary rollback: The number of rollbacks on a KP caused by an cancellation message.

Network Sends (Net. Send.): The number of events sent by LPs over the network.
Last Global Virtual Time (Last GVT.): sampling interval in virtual time
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Case Study: Monitoring Key Changes in PDES Performance

Performance Behavior view ® cCluster-0 (16) ® cluster-1 (48) @ cluster-2 (64)
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Case Study: Tracing Performance Bottlenecks
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Case Study: Analyzing Communication Patterns

Visualize PE level communications
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Limitations and Future Work

Latency

* For extremely short sampling rate, the progressive algorithms could not provide useful intermediate results because
of limited number of entities.
* Visualizations can keep updating too frequently, whereby following the patterns becomes more challenging.

Controlling the frequency of updates
in the data management module.
Scalability
* Current implementation supports limited number of metrics (< 20 metrics) and number of entities (< 10,000 entities)
that can be processed.
Aggregating multiple metrics
based on similarity

Comparison

e Our framework can only allow comparison of 2 selected metrics (side-by-side views) and communication matrices

(diff-communication views).
Tracking the performance metrics

through animated overviews.
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Questions?

Mail: spkesavan@ucdavis.edu
Website: CODES-VIS http://vis.cs.ucdavis.edu/codes-vis/
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