
A Visual Analytics Framework for Analyzing Parallel and Distributed
Computing Applications

Jianping Kelvin Li*
University of California, Davis

Takanori Fujiwara*

University of California, Davis
Suraj P. Kesavan*

University of California, Davis
Caitlin Ross†

Rensselaer Polytechnic Institute

Misbah Mubarak‡

Argonne National Laboratory
Christopher D. Carothers†

Rensselaer Polytechnic Institute
Robert B. Ross‡

Argonne National Laboratory
Kwan-Liu Ma*

University of California, Davis

ABSTRACT

To optimize the performance and efficiency of HPC applications,
programmers and analysts often need to collect various performance
metrics for each computer at different time points as well as the com-
munication data between the computers. This results in a complex
dataset that consists of multivariate time-series and communication
network data, which makes debugging and performance tuning of
HPC applications challenging. Automated analytical methods based
on statistical analysis and unsupervised learning are often insuffi-
cient to support such tasks without the background knowledge from
the application programmers. To better explore and analyze a wide
spectrum of HPC datasets, effective visual data analytics techniques
are needed. In this paper, we present a visual analytics framework
for analyzing HPC datasets produced by parallel discrete-event sim-
ulations (PDES). Our framework leverages automated time-series
analysis methods and effective visualizations to analyze both mul-
tivariate time-series and communication network data. Through
several case studies for analyzing the performance of PDES, we
show that our visual analytics techniques and system can be effec-
tive in reasoning multiple performance metrics, temporal behaviors
of the simulation, and the communication patterns.

Keywords: Visual analytics, information visualization, time-series
data, multivariate data, performance analysis, parallel discrete-event
simulation

1 INTRODUCTION

Data science and scientific research rely on parallel and distributed
computing to support large-scale data processing and analysis. Par-
allel and distributed computing applications typically run on high-
performance computing (HPC) systems, which have multiple com-
puting nodes with multicore processors that are interconnected. Per-
formance optimization and debugging for HPC applications are
difficult because background knowledge from the application pro-
grammers is often required. In addition, performance issues and
bottlenecks can occur at specific time intervals or in any one of the
processes. To analyze the behaviors and optimize the performance of
HPC applications, programmers need to collect various performance
metrics from each computing node at different time points as well as
the communication events among the nodes. The collected dataset
contains multivariate time-series and communication network data,
which makes data analysis and exploration challenging. Therefore,
automated analytical methods based on statistical methods and unsu-
pervised learning are often insufficient to analyze HPC datasets. To
effectively explore and analyze HPC datasets, visual analytics tech-
niques that combined interactive visualization and machine learning

*e-mail: {kelli, tfujiwara, spkesavan, klma}@ucdavis.edu
†e-mail: rossc3@rpi.edu, chrisc@cs.rpi.edu
‡e-mail: mmubarak@anl.gov, rross@mcs.anl.gov

methods are required. Many approaches and tools have been de-
veloped for analyzing the performance of HPC applications [18].
However, conventional visualization methods and tools are insuffi-
cient for analyzing both multivariate time-series and communication
network data as well as correlating them for performance analysis.
In our previous work [14], we have developed a visual analytics
system for analyzing Dragonfly [22] networks. We applied various
time-series analysis methods and visualization techniques to allow
users to explore both temporal behaviors and network traffics in a
dashboard with multiple coordinated views. However, our previous
system lacks support for correlating the temporal behaviors and
similarity of the computing nodes to communication patterns, which
is often needed for performance optimization of HPC applications.
In addition, the visual analytics methods need to be generalized and
extended to provide sufficient support for analyzing HPC systems
and applications.

In this paper, we present a visual analytics framework for ef-
fectively analyzing HPC datasets. Our framework generalizes and
extends the automated time-series analysis methods from our previ-
ous work [13] to reveal temporal behaviors and identify important
time intervals for potential performance issues. For correlating mul-
tiple performance metrics with communication patterns over time,
we visualize the communication patterns for important time intervals
along with the time-series clustering results. In addition to closely
coupling these analysis and visualization methods, our framework
also supports interactive visualizations for exploring HPC datasets.
To demonstrate the applicability and usefulness of our framework,
we use it to develop a visual analytics system for analyzing parallel
discrete-event simulation (PDES), which is a cost-effective tool for
modeling and evaluating scientific phenomena and complex systems.
Through several case studies, we show that the data analytics and
visualization methods incorporated by our framework can effectively
analyze and correlate multivariate time-series and communication
network data. In addition, we discuss how our framework can be
extended to support real-time analysis and monitoring of streaming
data from HPC systems and applications.

2 BACKGROUND AND RELATED WORK

While HPC applications typically run on a cluster of interconnected
computing nodes, a communication protocol, such the Message
Passing Interface [15], is often used for coordinate for parallel and
distributed computing. To analyze the behaviors and performance
of HPC applications, system or application level data need to be
collected on each computing node with the communication data
among the nodes. As we use the application of parallel discrete-
event simulation (PDES) for case study, here we first provide the
background information of PDES and its data characteristics.

2.1 Parallel Discrete-Event Simulation

PDES is a cost-effective and useful tool for modeling and researching
in many areas, ranging from studies of complex physical phenom-
ena to the designs of supercomputers. In a PDES model, events
are processed concurrently on different computing nodes. Conser-

vative synchronization and state saving can be used to assure the
correctness and accuracy of simulation models while running the
simulations in a parallel distributed fashion [32]. To improve the
efficiency of PDES, optimistic synchronization based on the Time
Wrap algorithm [20] can be used instead of conservative synchro-
nization. With optimistic synchronization, each logical process (LP)
in the simulation independently processes events without frequent
global synchronization among the processing elements (PEs). When
the causality constraint is broken (i.e., an LP receives an event that
should have happened in the past), the LP must be rolled back im-
mediately to execute the event again in the correct order. Although
optimistic synchronization has been shown to improve the scalabil-
ity, it relies on rollbacks of out-of-order events and either reverse
computation or state saving to ensure the overall correctness of the
simulations. Multiple factors can affect the rollback behavior of
an optimistic PDES and it is difficult to understand the rollback be-
havior for choosing the optimal configuration of parameters, which
makes debugging and tuning for PDES a challenging task.

In this work, we use the Rensselaer’s Optimistic Simulation Sys-
tem (ROSS) [9], an open source discrete-event simulator that pro-
vides optimistic parallel event scheduling. ROSS uses a technique
called reverse computation [10] where the model developers decide
how the rollback mechanism works using user-defined functions,
which allows ROSS to process up to billions of events [29]. How-
ever, the performance and efficiency of ROSS depend on the models
being simulated and the associated workload, which can impose
subtle performance issues and bottlenecks. Interactive analysis and
visualization of the instrumented data are necessary for understand-
ing the performance issues to mitigate the bottlenecks in order to
optimize performance. By using our visual analytics system, data
collected from ROSS can be used to effectively understand complex
behaviors, debug simulation models, and optimize performance.

Understanding the workload characteristics of HPC applications
is necessary for effective performance analysis. Like many parallel
applications, ROSS uses Message Passing Interface(MPI) for dis-
tributed and parallel computing, where each PE is an MPI process.
To enable optimistic synchronization, ROSS maintains its own clock
called the global virtual time (GVT) and is computed as the mini-
mum of all unprocessed events across all PEs in the simulation [20].
Additionally, ROSS pre-allocates memory for storing events when
initializing simulations. An event must continue to be stored in
memory until the timestamp is less than the GVT, which means the
event is committed and will not be rolled back. ROSS introduces the
kernel process (KP) for managing a shared processed event list for
a collection of LPs mapped to a single PE. When a KP rolls back,
it must roll back all its LPs to the same point in virtual time, due
to which some LPs could be rolled back unnecessarily. Having too
many LPs mapped to a KP can result in performance degradation
due to unnecessary rollbacks. In addition, the MPI communication
between PEs can cause out-of-order events which lead to rollbacks.
Therefore, we need to analyze both the rollback and communication
behaviors for identifying performance bottlenecks in PDES.

2.2 Data and Properties

Our framework is designed for analyzing HPC applications that
collect multivariate time-series and communication network data
for analyzing performance. In general, the time-series data contains
numerous performance metrics for each computing node at a specific
sampling rate, which is also used for collecting the communication
data among all the computing nodes. For our case studies, we
use the ROSS Instrumentation layer [34] to collect time series and
communication network data. The instrumentation layer provides
three time-sampling modes, which allow users to sample simulation
engine and model data (1) immediately after GVT computation,
(2) at real-time sampling intervals, or (3) at virtual time sampling
intervals. When sampling data from the simulation engine, the user

can collect data for numerous metrics at different granularities (PE,
KP, and LP). The specific metrics used in our visual analysis case
studies are:

• Primary Rollbacks: The number of rollbacks on a KP caused
by receiving an out-of-order event.

• Secondary Rollbacks: The number of rollbacks on a KP
caused by an anti-message (i.e., a cancellation message).

• Virtual Time Difference: The difference in time between a
KP’s local virtual clock and the current GVT. The value is
typically positive, but it can be negative, indicating that the KP
has not processed any events since the last GVT.

• Network Sends: Number of events sent by LPs over the net-
work.

• Network Receives: Number of events received by LPs over
the network.

The metrics collected are either directly related to rollback behavior
(e.g., number of rollbacks) or communication among PEs, KPs, and
LPs (e.g., network sends), which has an effect on rollback behavior.

2.3 Related Work
Various visualization methods and tools have been developed for
performance analysis of HPC applications. Isaacs et al. [18] pro-
vided comprehensive surveys of performance visualizations. Sev-
eral general-purpose performance tools, such as HPCToolkit [1],
VAMPIR [31], and TAU [36], provide graphical results of perfor-
mance profiles and traces of parallel applications. However, the
visualizations that these tools provide are not designed for analyz-
ing large-scale data. While some of them (e.g., TAU) can show
the performance metric (e.g., execution time) with physical loca-
tions of the processes, they do not provide effective visualizations
to show patterns of the communication-related performance metric
between simulation entities (e.g., network routers, MPI ranks, etc).
These missing features are necessary to analyze large-scale parallel
applications.

Researchers have developed visualizations for large-scale parallel
applications, such as applications running on supercomputers. Box-
fish [25] projects 3D torus networks used in supercomputers on both
2D and 3D views to analyze network traffics with the topological
properties. Bhatele et al. [5] analyzed Dragonfly-based networks
by using a radial layout and a matrix view to show inter-group and
intra-group links between the compute nodes. Fujiwara et al. [14]
utilized node-link diagrams and the matrix-based representations
with hierarchical aggregation techniques to visualize any type of
network topologies. Li et al. [26] developed flexible visualization
to analyze the network performance on the Dragonfly network by
applying data aggregation techniques to provide the visualization
scalability for large scale networks.

To analyze optimistic PDES, Ross et al. [34] introduced a visual
analytics tool specialized for the ROSS optimistic PDES frame-
work [9]. This tool is designed to analyze the simulator performance
from multiple aspects, such as communication patterns and corre-
lations between multiple performance metrics. However, only the
aggregated values of the selected metrics are visualized for ana-
lyzing the change of the performance metrics over time, which is
insufficient to depict the temporal behaviors of different entities.
Because various temporal aspects affect the rollback behaviors and
performance issues, more advanced temporal analysis of perfor-
mance metrics is required to better understand the performance and
behaviors of optimistic PDES.

Several researchers have studied techniques for temporal analysis.
With an animation based approach, Sigovan et al. [37] used an
animated scatterplot to analyze the temporal patterns in application

execution. However, it is difficult to find the patterns of lengthy
performance data with analysis methods that rely on animation.
The Ravel visualization tool [17] visualizes execution traces and
event histories of parallel applications using logical time instead of
physical time. Using logical time allows the application developers
to analyze the execution sequence from the program’s perspective.
Muelder et al. [30] introduced the “behavior lines” for analyzing
cloud computing performance. These lines show an overview of the
behavioral similarity of multivariate time-varying performance data.
Fujiwara et al. [13] designed a visual analytics system that integrated
various advanced time-series analysis and unsupervised machine
learning methods to overview and analyze the network behaviors of
large-scale parallel applications.

However, these approaches only support analysis of either time-
series or network data. Effective visual analytics methods and tools
are lacking for analyzing both multivariate time-series and commu-
nication data as well as exploring their correlations. In our work,
we adapt the methods for summarizing large-scale network and the
temporal analysis methods for large-scale parallel applications to
facilitate effective analysis and exploration of HPC datasets.

3 METHODOLOGY

An overview of our framework is shown in Fig. 1. The multivariate
time-series and communication network data are first preprocessed
and indexed for efficient analysis. Time-series clustering is used to
classify each process in a HPC application based on their changes
of performance metrics over time, and change point detection algo-
rithms help identify the most important time intervals. To analyze
communication patterns, we can filter and aggregate the communica-
tion network data based on these time intervals to generate multiple
views of the network for identifying bottlenecks. Combining these
network views with the temporal behaviors views can help correlate
among different performance metrics and communication patterns.

Multivariate
Time-Series Data

Communication
Network Data

Time-Series
Classifications

Data
Preprocessing

Important Time
Intervals

Communication
Patterns

Interact

Temporal
Behavior Views

Communication Network
Views

Proximity
ViewsVisualizeAnalyze

Figure 1: Overview of our visual analytics framework for analyzing
HPC applications and systems.

3.1 Time-Series Clustering
Analyzing the temporal behaviors of HPC applications is useful
for identifying bottlenecks and optimizing performance. By ap-
plying time-series clustering techniques, we can easily identify the
subgroups among the computing nodes at different granularities.

In our approach, we employ the multiple time-series clustering
methods [12] and similarity measures used in [13]. In particular, we
use the Hartigan-Wong method [16] as a k-means clustering, the par-
titioning around medoids (PAM) as a k-medoids clustering [21], and
the complete-linkage clustering as a hierarchical clustering method.
k-means clustering is the fastest method among these options, with
time complexity of O(nk) (where n is a number of observations, and
k is a number of cluster centers). However, it requires observations
of l-dimensional vectors as inputs. Thus, we treat each time-series
as one observation and each processor’s metric value as an element
of the vector. Also, to avoid the initial centroid dependency, our
system runs k-means clustering multiple times (ten as a default)
with different initial centroid seeds, and then selects the best result.
While k-means clustering uses observations as inputs, the other two
clustering methods use dissimilarity between each observation as
their inputs. Even though their complexity (O(n2)) is worse than
k-means, these clustering methods are useful for analysis since (1)

they are more robust to noise and outliers [43], and (2) other simi-
larity measures developed for the time-series analysis can be easily
applied.

(a) Without clustering (b) PAM with Euclidean distance

Figure 2: Visualized results of the number of secondary rollbacks
without and with clustering. Colors represent the clustering labels
where the lines belong to. (a) Without clustering, it is difficult to find
important patterns. (b) Using PAM clustering with Euclidean distance
as the similarity measure, we can easily find the patterns. For example,
the pink lines show that the corresponding simulation entities’ number
of secondary rollbacks have high fluctuations.

To effectively perform time-series clustering, we use three sim-
ilarity measures: traditional Euclidean distance, Dynamic Time
Warping (DTW) [4], and Time Warp Edit Distance (TWED) [28].
Since DTW and TWED are the elastic similarity measures, we
use them to perform flexible matching in the time-series data. In
comparison to Euclidean distance which is the simplest and fastest
way (complexity of O(l)) to calculate dissimilarity of each time-
series, DTW and TWED (complexity of O(l2)) have performed
better for classification of time-series data according to the recent
research [35]. Fig. 2a and Fig. 2b show examples of visualizations
without any clustering and with PAM with Euclidean distance as
the similarity measure, respectively. The cluster labels are encoded
with line colors, as shown in Fig. 2. In Fig. 2b, we can clearly see
the different patterns of performance behaviors. Refer to the works
of [13, 35] for more details about each similarity measure and the
differences between these three measures.

3.2 Time-Series Dimensionality Reduction (DR)

Because time-series clustering methods can only reveal certain tem-
poral patterns, it might fail to inform some important patterns which
are derived from a small set of the entities (e.g., sub-clusters and out-
liers). DR methods can supplement time-series clustering because
they depict more detailed similarities between each entity.

We leverage classical Multi-Dimensional Scaling (MDS) [39]
and t-Distributed Stochastic Neighbor Embedding (t-SNE) [42]. For
calculating a similarity between each time-series, we use the same
similarity measures used with the time-series clustering. By using
these DR methods, we can notice entities with similar behaviors
being close together. While the classical MDS is a linear DR method
and good for looking at the global structure of the multi-dimensional
data, t-SNE is a nonlinear DR method and useful to visualize the
local structure of the data. Because t-SNE often requires a longer
calculation time, to apply t-SNE more interactively, we use Barnes-
Hut t-SNE [41] (while the complexity of the original t-SNE is O(n2),
this implementation has only O(n logn) complexity). t-SNE has the
perplexity as a tuning parameter, which controls a balance of the
effects from local and global structures of the data [42]. While a
large perplexity will preserve more of the distance relationship in
the global structure, a small perplexity will focus on preserving the
distance relationship between a small number of neighborhoods In
most applications, the perplexity is set between 5 and 50 [42]. We
set the default value to be 30, and the user can change the value
based on the analysis.

Examples of visualizations with different DR methods are shown
in Fig. 3. These examples show that DR-based visualization helps
find subgroups and outliers within the clusters of time-series.

(a) The number of secondary rollbacks (b) MDS (c) t-SNE

(d) After selection of (a) (e) MDS (f) t-SNE

Figure 3: Examples of time-series DR. (a) shows the number of
secondary rollbacks clustered with PAM with Euclidean distances.
(b) and (c) are results after dimensionality reduction with MDS and
t-SNE, respectively. When compared to the clustering result in (a),
we can find clusters of smaller size in MDS and t-SNE, as indicated
with green circles and arrows in (b) and (c). (d), (e), and (f) show the
small clusters selected from (b) or (c). When compared with MDS in
(b), t-SNE in (c) finds more small clusters (e.g., cyan clusters in (b)
are separated in four small clusters in (c)).

Figure 4: An example of segmentation for the temporal performance
metric. The E-Divisive detects five segments (from A to E) from
multiple lines.

3.3 Time-Series Segmentation with Change-Point De-
tection

With time-series clustering and DR, we can quickly analyze tempo-
ral patterns in performance metrics. Remaining required analysis
is to understand the effect of communication patterns on the per-
formance [34]. However, exploring and comparing communication
data one-by-one at each time is a time-consuming task. To help
effectively compare communication data across time, we want to ob-
tain a temporal summary of the changes in communication data. We
achieve this by segmenting time-series data and summarizing each
segmentation with visual aggregates (e.g., sums or mean values).
This idea is inspired by the temporal summary images (TSIs) [8],
which is designed for generating narrative visualizations by summa-
rizing the time-series data.

To segment time-series data, we can use the change point detec-
tion, which is developed for time-series analysis [2]. We use the
E-Divisive method [19] because it can detect multiple change points
for a set of time-series in a reasonable amount of time. Fig. 4 shows
an example of segmentation with the E-Divisive method. Combining
time-series segmentation with visualization for communication data
(discussed in the Sect. 3.4), we provide a visual summary of changes
in communication patterns in our system, described in Sect. 4.

3.4 Visualization of Communication Patterns
For parallel and distributed computing applications, exploring the
communication pattern between the processes is essential. In our
framework, we use the hierarchical circular visualization techniques
for visual analysis of the communication patterns. As shown
in Fig. 5, in a hierarchical circular visualization, lines or ribbons
at the center represents the communications (e.g., network sends,

Figure 5: Hierarchical circular visualizations for showing communi-
cation patterns between entities as well as a correlation between
performance metrics. While the color of the ribbons shows a value of
the selected communication metric, the color of the rings can be used
to encode clustering results (a) or metric values (b).

Figure 6: The analytical flow of using the system. Each step involves
one or more views.

network receives, the sum of these, or the maximum value of these)
between entities, while different performance metrics (e.g., primary
and secondary rollbacks) can be stacked on the circumferences (or
rings) to show their correlation to the communication patterns. Hi-
erarchical aggregation is used to group the entities for organizing
the circular visualization, so load balancing and distributions can be
easily observed.

In addition to the communication patterns and performance met-
rics of the computing nodes, we also encode the time-series cluster-
ing results in the circular hierarchical visualization. Fig. 5a provides
an example that we visualize both the time-series clustering results
(encoded with color) and performance metrics (encoded with the
size of the bars). Comparing with Fig. 5b where we only show
the performance metrics, Fig. 5a allows us to correlate time-series
clustering results along with the communication patterns, under-
standing how computing nodes with different temporal behaviors
communicate with each other. This allows application programmers
to gain insights on how to assign and map processes on the network
to optimize performance and remove bottlenecks.

The selected communication metric is encoded with a blue-to-red
colormap. In Fig. 5a, the colors of the circular bar charts are used to
denote KP’s cluster labels obtained with the time-series clustering
method described in Sect. 3.1 and the heights of the circular bar
charts are used to show the values of performance metrics. Alterna-
tively, we can use circular heatmaps instead of circular bar charts
to use color or opacity to represent the performance metrics of the
KPs, as shown in Fig. 5b. As shown in these two examples, commu-
nication hot paths (shown in red lines or ribbons) and the workload
distributions are clearly revealed.

4 VISUAL ANALYTICS SYSTEM

Based on our framework, we have developed a visual analytics sys-
tem for analyzing the performance and behaviors of the ROSS PDES
engine. The design of our system and user interface is based on a
similar approach used in our previous work for analyzing network

Figure 7: The user interface of the system, which contains four components: (a) the behavior overview, (b1, b2) the behavior detailed views, (c1,
c2) the behavior similarity views, and (d) the communication network views. This example shows the secondary and primary rollback behaviors
obtained in Sect. 5.2. (a) shows an overview (the mean in this example) of the number of secondary rollbacks over time. (b1) and (b2) show
details of temporal changes of the numbers of secondary and primary rollbacks in the selected time range in (a), respectively. (c1) and (c2) show
the similarity of each time-series shown in (b1) and (b2), by using the DR method. In (d), summaries of the metrics and communications of each
simulation entity in the selected time ranges.

performance in supercomputers [13]. The analysis workflow and our
visual analytics system are shown in Fig. 6 and Fig. 7, respectively.
Our system clearly shows temporal behaviors of the performance
metrics (e.g., primary, secondary rollbacks, network sends, etc) by
coupling with unsupervised machine learning methods. Also, our
system supports visual comparisons of not only temporal behaviors
of multiple performance metrics but also communication patterns
between the simulation entities (e.g., PEs and KPs) across multiple
time intervals.

4.1 Visualization for Analyzing Temporal Changes

The first principal component of our system is to visualize the tem-
poral changes in the simulation entities’ performance metrics. As
shown in Fig. 6, the analysis starts with an overview of the temporal
changes in the behavior overview Fig. 7(a). From this overview, the
user selects a time range and metrics of interest, and then reviews
the details of the performance behavior in the behavior detailed
view Fig. 7(b1) and the behavior similarity view Fig. 7(c1).

4.1.1 Statistical Summary of Performance Behaviors

To help the user find a performance metric and a time range of his/her
interest, we provide a statistical summary of a selected performance
metric for each time point across time in the behavior overview
Fig. 7(a). The selected time metric (e.g., GVT, virtual time, or real
time) is encoded in x-coordinates. As for y-coordinates, from the
collected dataset, the user can select a performance metric (e.g.,
primary rollbacks and network sends) and a statistical measure (e.g.,
the maximum value, mean value, or standard deviation) as values
for the y-direction. For example, in Fig. 7(a), GVT and the mean of

secondary rollbacks of all KPs are selected for x- and y-coordinates,
respectively. This view is also used for a time range selection with
a single range selector placed at the bottom to show more detailed
information in the other views. For instance, in Fig. 7(a), the time
range where the mean of the number of secondary rollbacks is
increasing is selected.

4.1.2 Detailed Visualization of Performance Behaviors

The performance behavior of each computing node or process in the
selected time range from the behavior overview is visualized in the
behavior detailed view, as shown in the Fig. 7(b1). Similarly with
the behavior overview, x- and y-coordinates represent the selected
time and performance metric values, respectively. For example, in
Fig. 7(b1), the number of secondary rollbacks for each KP’s is visu-
alized. Because many polylines would be drawn (e.g., 256 polylines
in Fig. 7(b1)), without adequate visual support, finding interesting
patterns from these polylines is difficult. To address this, our system
allows users to select a clustering method described in Sect. 3.1, with
the number of clusters and a similarity measure from the settings,
placed on the left-hand side of the behavior detailed views. We
select categorical colors, each of which has enough saturation to
recognize the differences of each color line with a narrow width.
Furthermore, the behavior detailed view and similarity view share
the color scheme to correspond the time-series with the clustering
results.

4.1.3 Visualization of Similarities

While the behavior detailed view Fig. 7(b1) shows behaviors of per-
formance metrics for each simulation entity, it is difficult to convey

the dissimilarity of each behavior in detail. By using DR meth-
ods, we visualize the dissimilarity of the behaviors in the behavior
similarity view, as shown in Fig. 7(c1). The clustering methods,
described in Sect. 4.1.2, are effective for grouping the behaviors in a
macro sense; however, it would not be enough to find the patterns
that occurred in the small set of simulation entities (e.g., outliers and
anomaly behaviors). Also, while the hierarchical clustering method
can inform the potential subgroups within each cluster if we visu-
alize its clustering dendrogram, k-means and k-medoids clustering
cannot provide the subgroup information. The DR-based visualiza-
tion can help find these patterns (outliers, anomalies, and subgroups).
The behavior similarity view in Fig. 7(c1) shows a result obtained by
applying the DR for the behaviors visualized in the corresponding
behavior detailed view Fig. 7(b1).

4.2 Visual Comparison of Multiple Performance Metrics
In Sect. 4.1, we describe how our system help the user analyze the
temporal behavior in one selected performance metric. In addition to
this univariate time-series analysis, understanding the relationships
between multiple performance metrics is necessary to know how we
can achieve better PDES performance. For example, to understand
the rollbacks, we need to know why rollbacks happened (i.e., the
cause of the rollbacks) and what occurs after the rollbacks (i.e., the
effect of the rollbacks).

Our system can be useful for visually comparing between the
temporal behaviors of multiple performance metrics, shown in Fig. 7
where the detailed performance behaviors (b1 and b2) and their sim-
ilarities (c1 and c2) are presented together. To make the comparison
between two different metrics easier, the same color that represents
the cluster label is used for the corresponding simulation entities
(i.e., lines in (b1) and (b2) or points in (c1) and (c2)). The user
can select which behavior detailed view will be used for clustering
using the settings panel, placed on the left-hand side of the behavior
detailed views. Additionally, if the user wants to cluster the network
behaviors based on multiple metrics (e.g., the numbers of primary
and secondary rollbacks), the clustering methods and similarity mea-
sures described in Sect. 4.1.2 can be used to support multivariate
time-series data. In this case, the system processes all metrics on a
scale between 0 and 1.

Moreover, to support comparison within a subset of the simulation
entities, our system provides multiple selection methods. First, the
user can apply filtering to the metric value for each view from the
settings. Second, the user can select which clusters to visualize
in the view from a context menu, which will be displayed with a
right-mouse click. Additionally, in the behavior detailed views, the
system provides a freeform selection that selects intersected lines
with the freeform drawn by the user. An example of the freeform
selection can be seen in Fig. 9. For the behavior similarity views, a
lasso selection is available to select a subset of points. After these
selections, the user can filter out the unselected lines or points. The
filtered out simulation entities in one view will also be filtered out
from the other views at the same time.

4.3 Visual Comparison of Communication Patterns
While all the views described above depict the performance be-
haviors from their time-varying aspects, we visualize a summary
of temporal changes in communication patterns as the last system
component.

By obtaining time segments with the change-point detection
method describe in Sect. 3.3, our system visualizes the summaries
of behaviors. For each time segment, we calculate mean values for
each metric (e.g., network receives and primary rollbacks) for each
processor (e.g., PE, KP, and LP), then depict them with the circular
visualization method described in Sect. 3.4. The user can also ad-
just these time segments based on their observations or background
information. Fig. 7(d) shows an example of the visualized result.

The circular visualization results are placed from the left in the order
of the five segments (indicated with the alphabets from A to E),
as shown in Fig. 7(b2). This example shows the network receives
between PEs as ribbons drawn in the center. Also, the KPs’ primary
rollbacks and secondary rollbacks are visualized in the inner and
outer rings, respectively. To allow the user to compare the changes
in each metric across time, for each metric, the range of the height
or the heatmap used in the rings is shared across different segments.
The user also can filter out the ribbons based on the metric value
from the blue setting menu placed on the top left of the view.

5 CASE STUDIES

To demonstrate the effectiveness of our data analytics and visual-
ization methods, we use our visual analytics system to evaluate the
efficiency of ROSS. ROSS can run a large-scale PDES that processes
up to billions of events. Interactive analysis and visualization of
the instrumented data are necessary for understanding performance
issues and removing bottlenecks in order to achieve the highest
possible efficiency. Here, we first provide details about the setup
of our experiments, then we present three cases for showing the
effectiveness of our methods for analyzing various factors that affect
the performance of ROSS in simulating next-generation supercom-
puters.

5.1 Experiment Setup
For our experiments, we use ROSS with the Dragonfly [23] net-
work simulation model provided by the CODES simulation frame-
work [29]. The Dragonfly configuration that we use models a system
similar to the Theta Cray XC supercomputer [3] at Argonne National
Laboratory with 864 routers and 3,456 compute nodes. Each router
is represented by a single LP that handles all router functionality,
while each compute node is represented by two LPs—one for gener-
ating the workload and one handling packet send and receive func-
tionality. This setup results in a total of 7,776 LPs. The workload
replayed over the Dragonfly network is an MPI trace from the DoE
Design Forward program of the Algebraic Multigrid (AMG) solver
for unstructured mesh physics packages with 1,728 MPI ranks [11].

5.2 Analysis of PDES Performance
In this case study, we use our visual analytics system to analyze
a ROSS simulation with 16 PEs, with each MPI rank associated
to a PE with 16 KPs. The result is shown in Fig. 7. The result
provides summaries of the simulation as well as useful insights for
identifying and removing performance bottlenecks. The behavior
detailed views(Fig. 7(b1) and (b2)) show the secondary and primary
rollbacks, respectively. Change point detection is performed to auto-
matically select the five salient time intervals (A to E). For each of
these five time intervals, the system automatically generates a hier-
archical circular visualization to show the communication patterns
between PEs. Also, the numbers of primary and second rollbacks of
the KPs across the PEs as the inner and outer rings of the circular
visualization, respectively. The colors in the circular visualizations
show the clusters of KPs from the time-series clustering results. This
allows us to see the distributions of KPs with different similarities
among the PEs.

From the behavior detailed views(Fig. 7(b1) and (b2)), we can
see that the numbers of both primary and secondary rollbacks rise
and fall in time interval A, generate two peaks in time interval B,
stay low in time interval C, generate two more peaks in time interval
D, and then drop to very low in the final time interval. In Fig. 7(d),
the communication patterns for each of these five time intervals are
visualized. We can see that the number of communication events
increases as the number of rollbacks increases, and the number of
communication events between PE 7 and PE 8 is significantly higher
in all the time intervals with a high number of rollbacks (A, B, and
D). This suggests that the communication between PE 7 and PE 8

Figure 8: DR and clustering results (a) are visualized in communica-
tion view (b) to analyze the similarities of the KPs in each PE.

might have caused many of the secondary rollbacks, which indicates
this is a potential performance bottleneck.

5.3 Proximity and Communication Patterns
For parallel and distributed computing, assigning processes with
very different behaviors to the same computing node might result
in performance degradation. In order for PDES to achieve good
efficiency, the KPs in the same PE should have similar behaviors to
reduce the number of rollbacks. In addition, the KPs that are commu-
nicating intensively should have similar behaviors as well, otherwise
they can cause rollbacks to each other. With the time-series cluster-
ing results providing a measure of similarity for each KP over time,
encoding this information in the hierarchical circular visualization
allow users to visually correlate the communication patterns to the
temporal behaviors based on similarity, which can provide more
insights for optimizing performance. Fig. 8 shows the two views
from Fig. 7 for informing users the similarity among the KPs and the
communication view with color encoding the classification of the
KPs, respectively. As the hierarchical circular visualization shows,
the KPs in each PE have similar temporal behavior, which indicate a
good assignment and mapping of KPs to the PEs. However, there are
also many communication events occurred between KPs in different
clusters, which can increase the number of rollbacks.

While the classification provided by the time-series clustering
method only shows a fixed number of clusters (e.g. three clusters in
this case), the behavior detail view (Fig. 8a) can reveal the similarity
within each cluster. As we can see here, the KPs in the yellow cluster
have relatively low similarity when comparing to the other two
clusters. We can also see from the hierarchical circular visualization
that PE 8 have higher number of rollbacks than PE 0 and 7, and
having intense communication with PE8 within the same cluster can
also cause performance bottlenecks. This case study demonstrates
the usefulness of our visual analytics framework that includes time-
series clustering result in the hierarchical circular visualization for
visually correlating between temporal performance behaviors and
communication patterns.

5.4 Interactive Analysis
Analyzing the time-series data of PDES simulations can help under-
stand and correlate the performance behaviors over time, which can
gain useful insights for removing bottlenecks and improving perfor-
mance. Our time-series clustering methods and the user interface
of our visual analytics system provide effective ways to analyze,
compare, and correlate the temporal behavior of PDES. To analyze
the temporal behaviors of the simulation with 16 PEs, we can com-
pare two performance metrics over time. Fig. 9a shows time-series
clustering (PAM with Euclidean distance) results for the number of
network sends and receives over time, with each line representing a
KP. The line charts show the peaks of the network sends and receives
occur in the middle and near the end of the simulation. The colors
of the lines are based on the time-series clustering results of the first

(a) Before selection

(b) After selection

Figure 9: Visual comparison of the network sends (a1) and network
receives (a2) with the behavior detailed views. PAM clustering with
Euclidean distance is applied based on both network receives and
sends. In (a), the entities which have high network sends are selected
with the freeform selection, as indicated with a blue-curved line. In (b),
only the selected entities’ network sends (b1) and network receives
(b2) are visualized in the behavior detailed views.

selected metric (network sends), showing the subgroups of KPs with
similar temporal behaviors.

Users can select any two different performance metrics for com-
parison and analysis. In addition, our system also supports data
filtering for interactive visual analysis of details on demand, which
allows a better correlation of performance metrics and temporal be-
haviors. From Fig. 9(a1), we can select a subset of KPs with a large
number of network sends (yellow lines) and show these in Fig. 9(b1).
Fig. 9(b2) shows the number of network receives for those selected
KPs. We can see that KPs with a large amount of network sends in
most of the simulation time have very few network receives.

Encoding time-series clustering results in the hierarchical circular
visualizations also helps users to make selections for interactive
analysis. As we see from the result in Fig. 8, the KPs in the yellow
cluster have more intense communication and relatively low simi-
larity comparing to other clusters. Base on this result, we can make
select the yellow cluster on the behavior views (line charts) to further
investigate and verify our findings. By allowing interactive analysis
of different aspects of PDES or other parallel and distributed applica-
tions, more insights for optimizing performance can be provided to
the users. More important, the analysis and visualization methods in
our framework can support users to make selection to better facilitate
interactive visual analysis.

6 DISCUSSION AND FUTURE WORK

Our visual analytics framework is designed for reasoning and inter-
preting multivariate time-series and communication data collected
from HPC applications. As our current effort is just an initial step
to develop a full framework for building visual analytics system to
analyze HPC datasets, several possible extensions can be added to
our framework.

First, more visualization and interaction methods can be added.
Currently, we only use hierarchically circular visualizations for
showing the communication patterns and correlation of performance
metrics. Other visualization methods, such as matrix plot and node-
link diagram, can be used with additional user interactions. For
example, matrix plot can be used to create overviews of the commu-
nication network data by showing all the communication between
each pair of processes. On the other hand, a subset of computing
nodes or processes can be selected and visualized using node-link
diagram to provide more detailed information. For visualizing the
time-series clustering results and temporal behaviors, stacked area
charts and stream graphs can be used instead of line charts.

In addition to interactive visualizations, progressive visual analyt-
ics can be used to support analysis of large HPC datasets. Progres-
sive visual analytics provides useful intermediate results within a
reasonable latency even when the computational cost to complete
entire calculations is too high. An advantage of using progressive
visual analytics is that we can support the analysis and visualization
of streaming data [33], which can be used to enable real-time moni-
toring and analysis. However, converting our existing workflow for
streaming data is challenging, especially for multivariate time-series
data. One of the major challenges is how we show important changes
or meaningful patterns with a low visual cognitive load since avail-
able data is constantly updated [24]. To address such issues, we
can use Approximated-tSNE [33] instead of Barnes-Hut t-SNE [41]
for dimensionality reduction, and incremental time-series clustering
methods [38] instead of conventional k-means clustering. However,
PCA-based approaches still suffer from significant false alarms, as
they are highly sensitive to changes in any features. The actual
projection of points in DR view using incremental PCA methods
is highly sensitive to changes in features (e.g., indeterminant sign
flipping [7, 40]), thereby causing a lot of visual changes at every
time step.

Furthermore, we also plan to leverage in situ techniques [27]
for performing data analysis on the computing nodes running the
HPC applications. For example, we can perform in situ data pro-
cessing and visualization within the PDES process. With in situ
data processing, the simulation only needs to stream the analysis
results to the visualization system, which can significantly reduce
the requirement of network bandwidth. For example, we can per-
form progressive change point detection [6] in situ and send only
the data associated with important time intervals instead of logging
data for every time step during the simulation. As PDES already
leverages distributed computing, combining in situ data processing
and progressive analytics can be a scalable solution for real-time
monitoring and visualization of the large-scale PDES.

Our visual analytics framework is already useful for analyzing
HPC applications, and we have demonstrated its effectiveness with
case studies on PDES. Besides application-level data, we plan to
add support for analyzing system or hardware-level data (e.g., CPU
utilization and memory usage). We also plan to enable co-analysis
of application and hardware-level data for providing better support
for performance analysis and optimization. With these planned ex-
tensions, our framework can be more useful and robust for building
visual analytics solutions for a large class of HPC applications.

ACKNOWLEDGMENTS

This research has been sponsored in part by the U.S. Department
of Energy through grants DE-SC0007443, DE-SC0012610, and
DE-SC0014917.

REFERENCES

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. HPCToolkit: Tools for performance
analysis of optimized parallel programs. Concurrency and Computa-
tion: Practice and Experience, 22(6):685–701, 2010.

[2] S. Aminikhanghahi and D. J. Cook. A survey of methods for time
series change point detection. Knowledge and Information Systems,
51(2):339–367, 2017.

[3] Argonne Leadership Computing Facility. Theta. https://www.alcf.
anl.gov/theta. Accessed: 2017-12-11.

[4] D. J. Berndt and J. Clifford. Using dynamic time warping to find
patterns in time series. In Proc. Int. Conf. on Knowledge Discovery
and Data Mining, pages 359–370. AAAI Press, 1994.

[5] A. Bhatele, N. Jain, Y. Livnat, V. Pascucci, and P.-T. Bremer. Analyzing
network health and congestion in dragonfly-based supercomputers. In
Proc. IEEE Parallel and Distributed Processing Symp., pages 93–102,
2016.

[6] A. Bifet, R. Gavaldà, G. Holmes, and B. Pfahringer. Dealing with
change. In Machine Learning for Data Streams: With Practical Exam-
ples in MOA, pages 67–84. MIT Press, 2018.

[7] R. Bro, E. Acar, and T. G. Kolda. Resolving the sign ambiguity in the
singular value decomposition. Journal of Chemometrics: A Journal of
the Chemometrics Society, 22(2):135–140, 2008.

[8] C. Bryan, K.-L. Ma, and J. Woodring. Temporal summary images: An
approach to narrative visualization via interactive annotation generation
and placement. IEEE Trans. on Visualization and Computer Graphics,
23(1):511–520, 2017.

[9] C. D. Carothers, D. Bauer, and S. Pearce. Ross: A high-performance,
low-memory, modular time warp system. Journal of Parallel and
Distributed Computing, 62(11):1648–1669, 2002.

[10] C. D. Carothers, K. S. Perumalla, and R. M. Fujimoto. Efficient opti-
mistic parallel simulations using reverse computation. ACM Transac-
tions on Modeling and Computer Simulation (TOMACS), 9(3):224–253,
1999.

[11] Co-design at Lawrence Livermore National Laboratory. Alge-
braic Multigrid Solver (AMG). https://computation.llnl.gov/
projects/co-design/amg2013. Accessed: 2019-3-8.

[12] T.-c. Fu. A review on time series data mining. Engineering Applications
of Artificial Intelligence, 24(1):164–181, 2011.

[13] T. Fujiwara, J. K. Li, M. Mubarak, C. Ross, C. D. Carothers, R. B. Ross,
and K.-L. Ma. A visual analytics system for optimizing the performance
of large-scale networks in supercomputing systems. Visual Informatics,
2(1):98–110, 2018.

[14] T. Fujiwara, P. Malakar, K. Reda, V. Vishwanath, M. E. Papka, and
K.-L. Ma. A visual analytics system for optimizing communications
in massively parallel applications. In Proc. IEEE Conf. on Visual
Analytics Science and Technology, pages 59–70, 2017.

[15] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,
portable implementation of the MPI message passing interface standard.
Parallel Computing, 22(6):789–828, 1996.

[16] J. A. Hartigan and M. A. Wong. A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108, 1979.

[17] K. E. Isaacs, P.-T. Bremer, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz,
and B. Hamann. Combing the communication hairball: Visualizing par-
allel execution traces using logical time. IEEE Trans. on Visualization
and Computer Graphics, 20(12):2349–2358, 2014.

[18] K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz,
B. Hamann, and P.-T. Bremer. State of the art of performance visual-
ization. In Proc. Eurographics Conf. on Visualization, pages 141–160.
Eurographics-European Association for Computer Graphics, 2014.

[19] N. A. James and D. S. Matteson. ecp: An R package for nonpara-
metric multiple change point analysis of multivariate data. Journal of
Statistical Software, 62(i07), 2015.

[20] D. R. Jefferson. Virtual time. ACM Trans. on Programming Languages
and Systems (TOPLAS), 7(3):404–425, 1985.

[21] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Intro-
duction to Cluster Analysis, volume 344. John Wiley & Sons, 2009.

[22] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven, highly-
scalable dragonfly topology. In Proc. Int. Symp. on Computer Architec-
ture, pages 77–88. IEEE, 2008.

[23] J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven, highly-
scalable Dragonfly topology. In Proc. Int. Symp. on Computer Archi-
tecture, pages 77–88, 2008.

[24] M. Krstajić and D. A. Keim. Visualization of streaming data: Observing

https://www.alcf.anl.gov/theta
https://www.alcf.anl.gov/theta
https://computation.llnl.gov/projects/co-design/amg2013
https://computation.llnl.gov/projects/co-design/amg2013

change and context in information visualization techniques. In IEEE
Int. Conf. on Big Data, pages 41–47, 2013.

[25] A. G. Landge, J. A. Levine, A. Bhatele, K. E. Isaacs, T. Gamblin,
M. Schulz, S. H. Langer, P.-T. Bremer, and V. Pascucci. Visualizing
network traffic to understand the performance of massively parallel
simulations. IEEE Trans. on Visualization and Computer Graphics,
18(12):2467–2476, 2012.

[26] J. K. Li, M. Mubarak, R. B. Ross, C. D. Carothers, and K.-L. Ma. Visual
analytics techniques for exploring the design space of large-scale high-
radix networks. In Proc. IEEE Int. Conf. on Cluster Computing, pages
193–203, 2017.

[27] K.-L. Ma, C. Wang, H. Yu, and A. Tikhonova. In-situ processing
and visualization for ultrascale simulations. In Journal of Physics:
Conference Series, volume 78, page 012043, 2007.

[28] P.-F. Marteau. Time warp edit distance with stiffness adjustment for
time series matching. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 31(2):306–318, 2009.

[29] M. Mubarak, C. D. Carothers, R. B. Ross, and P. Carns. Enabling
parallel simulation of large-scale hpc network systems. IEEE Trans.
on Parallel and Distributed Systems, 28(1):87–100, 2017.

[30] C. Muelder, B. Zhu, W. Chen, H. Zhang, and K.-L. Ma. Visual analysis
of cloud computing performance using behavioral lines. IEEE Trans.
on Visualization and Computer Graphics, 22(6):1694–1704, 2016.

[31] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach.
VAMPIR: Visualization and analysis of MPI resources. 1996.

[32] D. M. Nicol and J. Liu. Composite synchronization in parallel discrete-
event simulation. IEEE Trans. on Parallel and Distributed Systems,
13(5):433–446, 2002.

[33] N. Pezzotti, B. P. Lelieveldt, L. van der Maaten, T. Höllt, E. Eisemann,
and A. Vilanova. Approximated and user steerable tSNE for progressive
visual analytics. IEEE Trans. on Visualization and Computer Graphics,
23(7):1739–1752, 2017.

[34] C. Ross, C. D. Carothers, M. Mubarak, P. Carns, R. Ross, J. K. Li,
and K.-L. Ma. Visual data-analytics of large-scale parallel discrete-
event simulations. In Proc. Int. Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems,
pages 87–97. IEEE, 2016.

[35] J. Serra and J. L. Arcos. An empirical evaluation of similarity measures
for time series classification. Knowledge-Based Systems, 67:305–314,
2014.

[36] S. S. Shende and A. D. Malony. The TAU parallel performance system.
Int. Journal of High Performance Computing Applications, 20(2):287–
311, 2006.

[37] C. Sigovan, C. W. Muelder, and K.-L. Ma. Visualizing large-scale
parallel communication traces using a particle animation technique.
Computer Graphics Forum, 32(3pt2):141–150, 2013.

[38] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. De Carvalho,
and J. Gama. Data stream clustering: A survey. ACM Computing
Surveys (CSUR), 46(1):13, 2013.

[39] W. S. Torgerson. Multidimensional scaling: I. theory and method.
Psychometrika, 17(4):401–419, 1952.

[40] C. Turkay, E. Kaya, S. Balcisoy, and H. Hauser. Designing progressive
and interactive analytics processes for high-dimensional data analysis.
IEEE Trans. on Visualization and Computer Graphics, 23(1):131–140,
2017.

[41] L. van der Maaten. Accelerating t-SNE using tree-based algorithms.
Journal of Machine Learning Research, 15(1):3221–3245, 2014.

[42] L. van der Maaten and G. Hinton. Visualizing data using t-SNE.
Journal of Machine Learning Research, 9(Nov):2579–2605, 2008.

[43] R. Xu and D. C. Wunsch. Survey of clustering algorithms. IEEE Trans.
on Neural Networks, 16(3):645, 2005.

	Introduction
	Background and Related Work
	Parallel Discrete-Event Simulation
	Data and Properties
	Related Work

	Methodology
	Time-Series Clustering
	Time-Series Dimensionality Reduction (DR)
	Time-Series Segmentation with Change-Point Detection
	Visualization of Communication Patterns

	Visual Analytics System
	Visualization for Analyzing Temporal Changes
	Statistical Summary of Performance Behaviors
	Detailed Visualization of Performance Behaviors
	Visualization of Similarities

	Visual Comparison of Multiple Performance Metrics
	Visual Comparison of Communication Patterns

	Case Studies
	Experiment Setup
	Analysis of PDES Performance
	Proximity and Communication Patterns
	Interactive Analysis

	Discussion and Future Work

