
TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, MONTH 2019 1

Visualizing Hierarchical Performance Profiles of
Parallel Codes using CALLFLOW

Huu Tan Nguyen, Abhinav Bhatele, Nikhil Jain, Suraj Padmanaban Kesavan, Harsh Bhatia,Todd Gamblin,
Kwan-Liu Ma, and Peer-Timo Bremer

Abstract—Calling context trees (CCTs) couple performance metrics with call paths, helping understand the execution and
performance of parallel programs. To identify performance bottlenecks, programmers and performance analysts visually explore CCTs
to form and validate hypotheses regarding degraded performance. However, due to the complexity of parallel programs, existing visual
representations do not scale to applications running on a large number of processors. We present CALLFLOW, an interactive visual
analysis tool that provides a high-level overview of CCTs together with semantic refinement operations to progressively explore the
CCTs. Using a flow-based metaphor, we visualize a CCT by treating execution time as a resource spent during a call chain, and
demonstrate the effectiveness of our design with case studies on large-scale, production simulation codes.

Index Terms—Performance analysis, software visualization, visual analytics, hierarchical data, coordinated and multiple views

F

1 INTRODUCTION

COMPUTATIONAL science and engineering codes
are widely used to gain a better understanding of

scientific phenomena. These simulation codes are executed
in parallel on large supercomputers with tens of thousands
of processors. To achieve faster scientific breakthroughs
via high throughput of supercomputers, computational
scientists look to optimize the performance of simulation
codes by profiling and improving the execution times of
different regions in the code.

As a result, domain experts are interested in identifying
functions or code regions that are responsible for significant
fractions of the overall execution time, e.g., using gprof [1],
as well as a calling context for each function invocation
(obtained by walking up the call stack from the function),
e.g., using HPCToolkit [2]. Combining the calling contexts
of different call sites (functions) into a single hierarchy, a
calling context tree (CCT) is obtained. Call sites form the
nodes of the CCT, which is rooted typically at the program
main, where the execution starts, and the path from the
root to a particular node provides the node’s calling context.
A majority of existing tools generate CCTs for the whole
application, including the libraries it depends upon.

Typically, only a small fraction of the nodes in a
CCT is of interest, but such nodes can be buried deep
in the tree, and identifying them could be challenging.
Furthermore, working directly off a given CCT presents
limitations in scalability, and is tightly bound to the

• H. T. Nguyen, S. P. Kesavan, and K.-L. Ma are with the Department of
Computer Science, University of California, Davis, CA 95616.
E-mail: {htpnguyen, spkesavan}@ucdavis.edu, {ma}@cs.ucdavis.edu.

• A. Bhatele is with the Department of Computer Science, University of
Maryland, College Park, MD 20742.
E-mail: bhatele@cs.umd.edu

• N. Jain is with NVIDIA, Inc, Santa Clara, CA 95050.
E-mail: nikhijain@nvidia.com

• H. Bhatia, T. Gamblin, and P.-T. Bremer are with the Center for
Applied Scientific Computing, Lawrence Livermore National Laboratory,
Livermore, CA 94551.
Email: {hbhatia, tgamblin, ptbremer}@llnl.gov

hierarchy of the nodes. Instead, it can be more informative
to utilize functional affinities between nodes (both among
siblings and across levels), which can have a deeper
semantic meaning when analyzing CCTs. For example,
different call sites that are part of the same code modules,
library interfaces, and application function names may be
grouped together for a more-effective and easy-to-navigate
visualization that still provides desired insights to the
user. Transformation of a CCT based on such semantic
information leads to the notion of a more generic structure,
called a call graph [3], [4], [5].

Effective and interactive exploration of call graphs
remains a challenge as domain experts seek easy-to-use
visualization tools to understand the profiles of large-scale
parallel programs. In particular, although many specific
and well-defined queries, e.g., extracting hot paths, may
be resolved through automated analysis, domain experts
often look forward to developing new hypotheses using
visual analytics tools combined with human intuition. Most
visualization tools currently available operate on CCTs
using tree-based metaphors, such as expandable tree layouts
used for navigating file systems [2], [6], [7], [8], treemaps [9],
or icicle plots [10]. Although familiar to most users,
expandable tree layouts do not scale with the size and depth
of CCTs, whereas other layouts also use a lot of screen space,
under-emphasize leaf nodes, or make comparisons across
subtrees difficult. Despite their limitations, domain experts
still consider tree-based visualization to be intuitive and
well-suited for analysis as it maintains the central notion
of hierarchy in the code structure. Nevertheless, the need
for an interactive visualization tool that preserves users’
intuition, and yet can support a new set of sophisticated
queries to explore large-scale CCTs remains a challenge.

Contributions. In this paper, we introduce a new visual
analytic tool for interactive exploration of call graphs. Our
specific contributions are as follows.

• We present the generic notion of super graphs, which can

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, MONTH 2019 2

(a) Graph View gives
a high level overview

(b) Histogram View

(c) Correlation
View

(e) Mini Histogram

(d) Node details

Fig. 1: CALLFLOW presents dynamically interlinked visualizations to explore calling contexts of large-scale parallel
applications. (a) The graph view visualizes the call graph using tailored Sankey diagrams at the desired level of detail. (b)
The histogram view enables identifying runtime variations across processes, using histograms and shadow lines, which
map histogram bins to process ids. (c) The correlation view allows finding correlation between two attributes of interest.
(d) is the tooltip that gives additional information when hovering over a node in the graph view, and (e) gives a closeup of
a node with a mini histogram, assisting a quick determination of variability across processes.

be used to represent sampled profiles at user-controllable
levels of detail, including but not limited to CCTs and call
graphs. We describe new abstractions of the data using
semantic filtering, aggregation, and splitting operations.

• We use a flow-based metaphor to visualize super graphs
using Sankey diagrams. Instead of using the traditional
top-down layout of trees, which emphasizes the levels in
the hierarchy, we use execution time as the resource spent
to encode the program execution along a given call stack.

• We present the realization of our visual encoding as an
open-source1 visualization tool, CALLFLOW (see Fig. 1).
Our tool enables interactive exploration of large-scale
CCTs through focus+context visualization by expanding
or contracting a super graph where desired.

• We discuss our design process, including data and
task abstractions, which are relevant to visualization
researchers working in similar domains. Through two
case studies using large-scale, parallel, production
simulation codes on leadership-class computing
machines, we evaluate the design and utility of
CALLFLOW, and report on a success story of how
visualization research can be leveraged to support crucial
inquiries in other fields.

1. Released under MIT license. https://github.com/LLNL/Callflow

2 PERFORMANCE PROFILES

Understanding performance profiles of large-scale,
parallel codes is essential to maximize the output
of software-hardware investments. Although we can
instrument and gather a variety of performance data on
parallel machines, this paper focuses on sampled profiles.
Sampled profiles are collected by forcing an interrupt
in the program every nth instruction. At each interrupt,
a sample is collected, which contains two types of
information: contextual information, i.e., the current line of
code, file name, the call path, the process ID, etc.; and
performance metrics, such as the number of floating point
operations or branch misses occurred since the last sample.
Statistically, the number of samples that fall within a given
function represents a good estimate of the time spent in
the function. Sampled profiles have been employed widely
for performance analysis as they produce reliable data with

// example code
int bar1(){/*...*/}
int bar2(){/*...*/}
int foo1()
{ bar1(); bar2(); }
int foo2()
{ bar1(); bar2(); }
int main()
{ foo1(); foo2(); }

name inclusive time exclusive time % time

bar1 4 4 33.34
bar2 6 6 50.00
foo1 6 1 8.33
foo2 6 1 8.33
main 12 0 0.00

TABLE 1: An example program with its flat profile. The
profile contains the inclusive (cumulative) time, the exclusive
(self) time, and the percentage of time a function uses.

https://github.com/LLNL/Callflow

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, MONTH 2019 3

(a) Call paths (b) Call tree (c) Call graph

main() foo1() bar1()

main() foo1() bar2()

main() foo2() bar1()

main() foo2() bar2()
mod1
• bar1() 4:4 mod2

• bar2() 6:6

main() 12:0

mod3
• foo1() 6:1 mod4

• foo2() 6:1
6 6

2 3
2 3

main() 12:0

bar1() 2:2 bar2() 3:3 bar1() 2:2 bar2() 3:3

foo1() 6:1 foo2() 6:1

Fig. 2: The call paths (a), call tree (b), and call graph (c) of the example program in Table 1. In (a), each call path shows
invocation instances of bar1() and bar2(), rooted at main(). Each node in the corresponding call tree contains three
pieces of information: node name, inclusive metric, and exclusive metric (denoted as inclusive : exclusive). Since the call
graph is constructed from the call tree, the original inclusive cost information can be retained through edge weights.

small overhead, which depends only upon the sampling
frequency, and not on the complexity of the call path. Table 1
exemplifies a simple sampled profile. The collected samples
can be aggregated in different ways to simplify the analysis.
Calling Context Trees. When the samples are aggregated
by unique call paths, it results in a calling context tree
(CCT) [11], [12]. Each unique invocation of a function (by
call path) becomes a node in the CCT, and the path from
a given node to the root of the tree represents a distinct
calling context. Metrics on each node can be inclusive or
exclusive—the former represents the metric values that can
be attributed to the body of a given function (including
any function calls in the body), and the latter represents
the difference between the inclusive value and the values
that can be attributed to its child nodes. Fig. 2(a) shows the
call paths of the program in Table 1, and Fig. 2(b) shows the
corresponding CCT.

However, when using performance tools such as
HPCToolkit [2], a node is not limited to function invocations
only but can also represent loops, statements, and other
code structures. Moreover, for parallel programs, one can
aggregate samples across all threads or processes to create
a global CCT or keep a forest of CCTs in which each
node carries separate information for each thread/process.
Therefore, despite being very informative, CCTs pose
practical analysis challenges. Modern applications are
typically built on top of rich frameworks and libraries that
provide many layers of abstraction, increasing the depth of
call paths, leading to very large CCTs. Such large-scale trees
are often hard to decipher, potentially leading to oversight.
Although one may want to reduce the size and/or depth
of the CCT by discarding the least important nodes, e.g.,
functions with negligible timings, a simple filtering of such
nodes could change the topology of the CCT, and standard
approaches for analysis may not be applied.
Call Graphs. Calling context trees can be aggregated in
different ways to provide information in a more concise
manner. Call graphs [1] are created by merging CCT nodes
with the same name (function name), e.g., see Fig. 2(c).

By aggregating CCTs across function names, call graphs
can significantly reduce the scale and complexity of the data.
Nevertheless, despite the simplification, call graphs of large,
parallel programs can retain additional complexity that
often prohibits the experts from unraveling the underlying
profiles. In favor of easy visual exploration, we introduce the
generic notion of super graphs, which allow aggregating raw
profiles at appropriate and controllable levels of abstraction.
Super graphs will be introduced in detail in Section 6.

3 RELATED WORK

Most analysis tools visualize CCTs as expandable trees [2],
[6], [7], [8], using which the user can show and hide nodes
as well as sort by attributes (see e.g., Fig. 3). Although
useful in some cases, such visualizations do not provide a
clear understanding of the code structure, and suffer from
scalability issues.

Node-link layouts [14], [15], [16], [17], [18], [19], [20],
[21] are a popular approach for tree visualization, although
dense matrix-based representations perform better for
large-scale trees [22], [23]. Node-link layouts represent
entities as nodes, and relationships as edges. In the case
of a CCT, the entities are the frames in the call stack and
edges represent the caller-callee relationship. Various types
of information can be shown on the node, e.g., time can be
encoded as the color of the node. Several techniques have
been proposed to extend node-link layouts by encoding
additional information. For example, DeRose et al. [24]
embedded a histogram onto the node to show imbalances
between processes, and Nguyen et al. [25] encode runtime
variation among processes to indicate the anomalies. Bohnet
and Döllner [26] identify and visualize features in the
data. For large-scale parallel applications with hundreds to
thousands of function calls, visualization of all nodes using
node-link layouts becomes intractable. More recently, Xie et
al. [27] employ a node-link layout to represent the learned
structural features of the CCT computed using an anomaly
behavior detection model. Burch et al. [28] use timeline- and
pixel-based aggregations to visualize dynamic graphs.

Many space-filling visualization approaches have
been used to visualize large-scale hierarchical data.
Treemaps [29], [30] have been effectively used to
visualize hierarchical data by partitioning the screen space
into bounding boxes that represent the tree structure.

Fig. 3: The CCT of Miranda [13] visualized as an expandable
tree using HPCToolkit [2]. Each node of the tree is shown,
but the overall structure of the application remains hidden.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, MONTH 2019 4

However, treemaps under-emphasize leaf nodes and make
comparisons between subtrees difficult. Radio plots [31],
where nodes are arcs stacked radially outward along the
depth of the tree, are also a candidate for tree visualization,
but also suffer from scalability issues. Since aggregation
of nodes of a CCT into a call graph (or more generally, a
super graph) can introduce nodes having multiple call paths
or nodes with multiple parents, hierarchical space-filling
visualization layouts are not well suited.

On the other hand, although node-link layouts
are effective to present connectivity, even for complex
graphs [32], [33], [34], the edges of standard node-link
layouts usually represent only connectivity. Since our
domain problem requires us to also encode the flow of
resources, most notably time spent, we employ a modified
node-link layout. A flow diagram uses a flow-based metaphor
that represents how energy is transferred from one entity is
transferred to another. It is commonly used in engineering
and science in the form of a Sankey diagram [35], [36], [37]. A
Sankey diagram uses a weighted, directed graph, where the
width of each link represents the amount of energy entering
and leaving an entity in the system. Sankey diagrams are
not limited to visualizing energy flow; other works have
extended the diagram to show the flow of time. Ogawa
et al. [38] represent the number of people participating
in the mailing list of open-source software projects each
month using a Sankey diagram. Wongsuphasawat et al. [39]
and Wang et al. [40] aggregate similar temporal events
of patients’ diseases and symptoms. In this work, we
use Sankey diagrams to visualize performance profiles by
representing time spent along the execution path.

4 DESIGN METHODOLOGY

Widely anticipated challenges in the design process for
domain-specific interactive visualization tools include the
gaps between the understanding and expectations of
visualization scientists and domain experts and insufficient
evaluation strategies [41], [42], [43]. The visualization
community has developed formal guidelines [43], [44], [45],
[46] for an effective design process. A common thread
among such methodologies is to have a verifiable approach
that translates domain knowledge and vocabulary into
visualization terminology, and in consultation with the
domain experts, evaluate various visualization choices with
respect to their suitability to the application at hand [47],
[48]. For example, Sedlmair et al. [46] present a nine-stage
framework encompassing the analysis of some specific
real-world problem faced by domain experts, design of a
visualization system to support a solution, validation of
the design, and reflection about the lessons learned. In this
work, we chose the four-phase nested model proposed by
Munzner [45] for the design of CALLFLOW, as this chosen
model provides a clear balance between flexibility and
specificity of the process. This paper describes the first three
phases of our methodology (Sections 5, 6, and 7). Due to
space limitations, we cannot provide the algorithmic and
implementation details of the tool.

“Information visualization is usually part of some creative
activity that requires users to make hypotheses, look for patterns
and exceptions, and then refine their hypothesis.” [47] This is

also the case with the domain experts collaborating with us,
which include software developers as well as performance
analysts who assist computational scientists optimize their
codes. Through an interactive collaboration with domain
experts, including interviews and discussions over a period
of several months, we identified the primary challenges
faced by them in the exploration of performance profiles of
large-scale parallel codes. CALLFLOW was developed in an
iterative manner, with our collaborators having access to the
evolving prototypes, allowing us to refine the CALLFLOW to
best assist the experts in their inquiries.

An increasing concern among different visualization
techniques introduced for software visualization is the
lack of concrete evaluation [49]. To this end, several
design decisions were made in consultation with the
experts, to resolve the tradeoff between the simplicity of
the tool and the types of queries supported. Section 6
also provides validation of some of our design choices.
Finally, we describe two case studies on real data gathered
from scientific applications running on leadership-class
supercomputers, and evaluate CALLFLOW’s effectiveness in
helping the user explore parallel application codes.

5 DOMAIN PROBLEM CHARACTERIZATION

The first phase of our design study involved developing
knowledge about the domain problem. Over a period
of about one year, we conducted several interviews
with various HPC experts at LLNL, who are interested
in improving the performance of large-scale parallel
applications. Our focus was to clearly understand their
goals, as well as the current workflow and the limitations
therein.

A CCT can contain a host of different information, and
has been used for several automated analysis techniques,
e.g., extracting hot-paths [2], [50]. However, such automated
approaches usually address only a well-defined aspect of
a more-general goal that domain experts are interested
in: “finding performance bottlenecks”. In practice, users
often face less well-defined problems, e.g., an application
underperforming on a particular input or a new platform,
without a clear indication of the root cause of the
problem. Through numerous discussions with experts,
it became clear that although an automated tool to
pinpoint problems would be ideal, past experience has
shown that the underlying causes are so case-specific
that human intuition and expertise are often key to
making progress. Consequently, the overarching goal when
designing CALLFLOW has been to provide a generic way of
exploring CCT data to either diagnose the problems directly
or identify which existing tools may lead to new insights.
High-level overview of calling contexts. The CCTs
constructed directly from sampled profiles contain details
up to individual function calls, and therefore, can create
tens to hundreds of thousands of nodes. For easy navigation
and understanding of data, experts expressed interest
in a high-level overview of CCTs with filtered and/or
aggregated information. CALLFLOW develops the notion of
super graphs to allow visualization of aggregated calling
contexts based on user-defined semantics.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, MONTH 2019 5

Metrics-based visual profiling. Two types of performance
metrics are critical for performance analysis: inclusive vs.
exclusive (see Section 2). Together, these metrics signify the
performance of different parts of the code and can offer
significant insights into bottlenecks and help address them.
For example, if the inclusive time of a given function
significantly outweighs its exclusive time, then experts
explore the performance of its callees, whereas attention is
paid to the function itself if its exclusive time is significant.
One of the goals for visual exploration of CCTs is to be able
to denote both inclusive and exclusive performance metrics.

Process-based visual profiling. When large-scale
applications are deployed on supercomputers, making
effective use of the available resources is critical. Although
increasing the number of processors typically yields
better performance, maximizing the performance requires
balancing the load on different processes. A visual
representation of the time spent by individual processes in
a CCT node can help understand the balance of load [24],
as well as in detecting parts of the codes that have high
exclusive costs distributed in an inconsistent fashion.

Additionally, the experts expressed interest in finding
out whether code slow down is related to IDs of specific
processes. For instance, the computation of the physical
domain in a simulation, e.g., a volume, is distributed among
the processes according to a certain regular pattern, e.g., a
row-major order. Knowing which MPI processes are slow
vs. fast and identifying any patterns, e.g., every nth process
being slow, allows experts to form new hypotheses on
potential root causes. Note that the experts expect such
patterns hard to generalize, as they could be domain- and
data-dependent, that can reorder the processes arbitrarily
and thus completely change the observed pattern.

User-driven interactive visual analytics. Given the
different types of analysis tasks that experts are interested
in, a severe limitation in their current workflow is the lack of
a comprehensive tool that allows the desired functionality
in an interactive manner. For example, HPCToolkit [2]
provides two separate views for top-down (calling context)
and bottom-up (callee’s context) traversals of a given CCT,
each supporting a different type of inquiry. However,
switching between views causes additional cognitive load,
leading to an analysis that is ineffective at best and
incorrect in extreme cases. To easen and accelerate the
exploration process, experts expressed interest in an unified
visualization with an ability to resolve different types of
queries while maintaining the user’s focus.

Finally, the experts are also interested in supporting
side-by-side comparative analysis to analyze how calling
contexts vary at the process level. For such comparative
analysis, the goal is to understand two types of differences:
1) comparison of CCTs’ contexts to understand hierarchical
differences in the caller-callee relationship, and 2) per-node
comparison to analyze the differences in execution metrics.

The aforementioned limitations in existing workflows
create several gaps in experts’ understanding of the
performance of large-scale applications, leading to
suboptimal use of computing resources. CALLFLOW is
designed to fill such gaps by supporting a versatile set
of interactive inquires on CCTs. Equipped with this tool,

the domain experts can not only explore the sophisticated
causes of performance bottlenecks more effectively, but also
devise new strategies to overcome them (see Section 8).

6 DATA TYPE ABSTRACTION AND OPERATIONS

Although different profilers can have slightly varied data
formats, generally, the input data to CALLFLOW contains
two types of information: (1) the hierarchy of function calls
in the profile, and (2) the performance metrics associated
with the functions therein. Irrespective of the source, the
former type of data can be converted into a a CCT or a call
graph, with its root at the first call of the application, usually,
the function main (see e.g., Fig. 2).
Super graphs. As argued earlier, the scale and complexity
of CCTs or call graphs poses significant challenges for
interactive visual exploration. In this work, we present
the generic notion of a super graph, which are created by
merging nodes of CCTs. Super graphs utilize semantic
information to provide a high-level overview of the code.
For example, several nodes in a call path often belong to the
same library and might have repetitive calls from different
code modules to form similar subtrees with different parent
nodes. In such cases, visualizing nodes that correspond
to modules or libraries are usually more meaningful than
function-level nodes. Therefore, grouping function calls by
modules provides a semantically meaningful representation
of the underlying CCT. Although the notion of semantic
representations for call graphs is not new [27], super graphs
are introduced as a more-general concept to express CCTs2

(merging no nodes), call graphs (merging by call paths),
module diagrams (merging by load module), and anything
in between (e.g., see Fig. 4).

Formally, we denote a super graph as Gcct(V, E), where
the set of nodes, V = {vi}, uniquely represent the call sites
(functions in the call stack), and the directed edges, E =
{eij}, capture the caller-callee relationship between vi and
vj , respectively. Each edge eij is associated with a weight
wij , which depends upon the performance metrics of the
two nodes (see e.g., Fig. 2(c)). The performance metrics for
nodes are stored as rows in pandas [51] dataframes, which
allow fast access and operations. In addition to inclusive
and exclusive metrics, cache misses, etc., the dataframe also
stores meta-attributes of the nodes, such as function name,
file name, and location in source code.

Given the scope and requirements for CALLFLOW, the
domain-specific goals can be translated into more-specific
graph operations: filtering, aggregating, and splitting of nodes.

6.1 Filtering of CCT Nodes

The first operation when processing any CCT is typically
filtering out nodes unlikely to be of interest to the user. In
particular, the nodes towards the bottom of Gcct typically
represent decreasingly smaller portions of the overall
run time. Since the goal of CALLFLOW is performance
optimization, functions that represent only a tiny fraction
of the overall time are not of much interest to the user. Also,
each function could potentially be represented thousands

2. Although a CCT is a tree, notating it as a (super) graph allows
discussing the various operations of interest more concisely.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, MONTH 2019 6

(0)main

(3)lib3 (4)lib4 (5)lib3 (6)lib4

(1)lib1 (2)lib2

(8)lib5 (9)lib4 (10)lib1

(11)lib5

(7)lib5

(0)main

(3,5)lib3

(4,6,9)lib4

(2)lib2(1)lib1

(7,8,11)lib5(10)lib1

(0)main

(4,6,9)lib4

(2)lib2(1)lib1

(11)lib5(10)lib1

(3,5)lib3

(7,8)lib5

(a) A given CCT (b) Node aggregation (c) Split by entry function

Fig. 4: Node aggregation and splitting operations. (a) shows the original tree, labeled as “[function name] module_name”;
(b) shows aggregation operation where nodes from the same module are merged together. The aggregated super graph
contains two supernodes corresponding to lib1 to prevent a cycle; (c) shows a split by entry function operation in which
lib5 supernode is split with respect to its entry functions, (7,8) vs. (11).

of times in the CCT, being called from different contexts.
Therefore, filtering Gcct by removing nodes with small
inclusive runtimes could remove a nontrivial portion of
the execution. Instead, filtering the nodes based on the
total inclusive runtimes across all the instances of the
corresponding function is more meaningful. The aggregate
information of the removed nodes still remains available as
part of the inclusive runtime of their ancestors. The only
information that is lost is the ability to differentiate how this
filtered runtime is distributed among lower level calls.

From our experiments, we noticed that even a
conservative threshold (less than 0.1% of the root’s inclusive
run time) can reduce the number of nodes in Gcct drastically
(by approximately 70–80%). A majority of nodes are filtered
out because most function calls are wrapper functions
that are called by a library in the program and do not
contribute to effect in performance. Therefore, filtering is
key to enable an interactive tool. The output of the filtering
is a smaller super graph, Gfilt. Filtering removes information
from the CCT, and thus, in principle, could impact the
downstream analysis. To mitigate the information loss,
CALLFLOW supports repopulation of the filtered nodes, if
desired. Combined with this fail-safe operation, filtering
proves to be a powerful tool for exploration of large CCTs.

6.2 Aggregation of CCT Nodes
Modern software abstractions have numerous intermediate
call sites that are not relevant to performance analysis. Such
call sites can obscure relevant information by spuriously
increasing the height of the tree. For example, common
accessor functions in object-oriented languages or template
wrappers create additional call sites with insignificant
performance metrics. In most cases, these nodes are internal
to the tree therefore, cannot be removed without removing
the corresponding subtree. Instead, these nodes should be
aggregated with respect to higher-level code abstractions,
such as libraries, code modules, files, etc., which are often
more intuitive to the user.

In particular, every node in the CCT belongs to a
higher-level abstraction, which can be represented as a
hierarchy map, µ. Merging the nodes of Gcct (or Gfilt)
recursively based on µ until a desired level of abstraction
is obtained creates the super graph, Gcfg(Vs,µ, E s,µ). Here,
the supernodes, Vs,µ = {vs

i} are aggregates of the nodes of

Gcct (or Gfilt) with respect to µ, and the superedges E s,µ connect
the supernodes. For example, given a hierarchy of a function
call, module > library > filename > function, after merging,
a module could become a supernode with the remaining
hierarchy stored as its subgraph.

To describe the performance metrics for supernodes,
we first discuss another crucial data component. The entry
functions are the functions through which the control enters
to a particular module or library. Specifically, given a
supernode, vs = {vi}, its entry functions, vs,e are defined
as the nodes whose parents do not belong to the same
supernode, i.e., vs,e = {vj} such that {vj} ∈ vs and
{parent(vj)} /∈ vs. The exclusive metrics of a supernode,
vs, is the sum of those of all its components nodes {vi}.
However, the inclusive metrics of only the entry functions,
{vs,e} are used to represent that of vs.

We note that although aggregation removes valuable
information, such as call paths, from the visualization, the
domain experts value the ability to quickly detect bottleneck
functions over finding the 1-to-1 caller-callee relationship.
Aggregation of nodes could introduce cycles in the super
graph when a function belonging to a library is called
multiple times along a call stack. However, cycles break the
common understanding of control flow, and are typically
considered artifacts of specific implementation patterns,
most notably callback functions. Furthermore, cycles would
significantly complicate the visualization. Consequently, we
prevent cycles from forming during the aggregation, and
instead preserve multiple nodes from the same namespace
level. For example, when merging the nodes by the libraries
they belong to (see Fig. 4(b)), the supernodes lib1 and
lib2 create a cycle because they call functions in each other.
For such cases, duplicate supernodes can be created for
some of the labels, e.g., lib1. Independent of the hierarchy
based on which the nodes are merged, the metrics for the
supernodes can be aggregated, and the edges preserved.
The resulting super graph would represent the control flow
at the selected level of detail with nodes indicating concepts
like modules and edges indicating the calling hierarchy.

Aggregation of nodes can be done easily and
interactively using standard data structures. The one
potential pitfall of these operations is that preventing cycles
may result in multiple merged nodes with the same name
label, i.e., from the same module/library, which could be

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, MONTH 2019 7

counter-intuitive to the user. However, experts anticipate
that most such cases arise due to the callback architecture
used for performance introspection, as CCTs are typically
recorded using default callback interfaces. In a callback
pattern, one of the two nodes is associated with setting
the callback, and typically does not contribute meaningful
runtime. As a result, we employ a layout that does not
support cycles, since their downsides outweigh the benefits.

6.3 Splitting of CCT Nodes

The super graph at a given level of refinement may be too
coarse to diagnose many performance problems. Therefore,
the users are interested in resolving additional details upon
request. To this end, CALLFLOW supports splitting of a
chosen supernode into two or more (super)nodes, and
redistribute the original flow. Although there could be
several strategies for splitting nodes, each guided by its own
application-dependent use case, through several discussions
with domain experts, two most relevant approaches to the
semantics of the analysis were identified.
Split by entry functions is the operation that splits a
supernode into “component” (super)nodes based on what
entry functions they are called by. As discussed earlier,
entry functions are generally the public API functions of
a module, or a library which the developers are familiar
with. To allow users to know the API calls that consume
high resources, CALLFLOW allows the user to select one or
multiple entry functions belonging to a supernode, and split
it into component (super)nodes such that each component
(super)node corresponds to a single entry function. Fig. 4(c)
shows the splitting of node lib5 into two, based on entry
functions (7,8) and (11), respectively.
Split by callees. Often, lower-level libraries, e.g., MPI,
which are typically called by multiple higher-level modules,
consume more time than expected. In such cases, the logical
next step is to determine whether the problem exists in
all contexts, i.e., in all parent modules, or only in some of
them. To support such queries, CALLFLOW allows splitting
a (super)node with respect to its parents. This operation
allows the user to determine where the costs for a particular
(super)node come from and where the cost will propagate
to. Additionally, it informs the user about the functions or
modules responsible for high exclusive time, if any.

By determining entry functions as part of the
aggregation step, both splitting operations are easy to
support. Both involve only local changes in the topology
of Gcfg and local updates to the metrics. Other splitting
operations could be implemented, e.g., to isolate specific
nodes of Gcfg or to recursively split apart two subtrees.
However, the former would require first determining which
node to isolate, implying that the source of the problem
is known, and visual exploration not needed. The latter
is an example of automating certain interactions and, in
practice, we have not encountered common enough patterns
to justify the additional complexity. Another potential
candidate is a split by children; however, such a split may
not be possible in most cases, as a single node could call
into multiple different libraries, and thus may not be able
to split accordingly. In summary, the experts consider the

chosen splitting operations sufficiently flexible to support
the detail-on-demand exploration of interest.

7 VISUAL DESIGN OF CALLFLOW

CALLFLOW is an interactive tool with three linked views:
control flow view, histogram view, and correlation view, (see
Fig. 1 for an overview). Together, the three views support the
queries of domain experts in an interactive manner.

7.1 Control Flow View

The control flow view presents an overview of the
application’s control during execution. We visualize Gcfg
(or Gcct or Gfilt) using a flow-based metaphor with Sankey
diagrams, where a directed graph is laid out with respect
to the amount of resource under consideration. We treat
the inclusive metric (usually, the execution time) as the
resource being distributed among supernodes. To effectively
use the aspect ratio of common visual mediums (e.g.,
computer monitors), we use a horizontal Sankey layout,
where the direction of the graph goes from left to right.
Thus, each supernode is encoded as a rectangular bar with
its height representing the sum of the inclusive metrics of
all its entry functions. A superedge {vs

i,v
s
j}, represents the

flow of inclusive metrics between the two nodes, and the
thickness (in vertical direction) of the superedge indicates
the inclusive metric consumed by the target node, vs

j .
By design, this visual encoding captures the direction of

the super graph, i.e., the control flow can be traced easily
from the root node (left) to leaf nodes (right). Furthermore,
our visual encoding not only highlights inclusive metrics
directly, but also indicates exclusive metrics easily. In
particular, the exclusive metric for a given supernode is
the difference in the thickness of incoming and outgoing
superedges. The exclusive metric is indicated by empty
portions towards the bottom of supernodes, where no
outgoing edges exist, e.g., the physics module in Fig. 1.
However, such differences may be difficult to notice
visually when exclusive times for nodes are small. To
alleviate this limitation, CALLFLOW can also use color to
encode exclusive metrics. Finally, we use constant widths
(horizontal spans) for all supernodes to easily compare of
the area of the nodes and identify nodes with high costs.
Thus, the user can identify nodes with high inclusive and
exclusive cost as bars with a large area and dark color.

Although the visual encoding described above captures
the control flow of an application, effective exploration still
requires tailoring the Sankey layout of the super graph
at hand, especially considering the interactive support
of splitting and aggregation operation for large-scale
super graphs. CALLFLOW’s graph layout is based on
a key domain-specific insight that neither the depth of
a supernode nor the order of sibling supernodes has
any inherent significance. Consequently, we can vary the
placement of supernodes to make the graph as readable as
possible, with the only constraint being that the left-to-right
order must preserve the call stack order. The key criterion
to optimize when choosing a suitable layout is to minimize
the number of edge crossings, because edge crossings create
visual clutter and can obscure information.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, MONTH 2019 8

(a) Unoptimized layout (b) Optimized layout

Fig. 5: CALLFLOW uses a modified version of layout optimization presented by Alemasoom et al. [37]. With many
overlapping edges in the unoptimized layout, (a) the connectivity is harder to decipher. Using the optimized layout
(b), e.g., edges connecting mixeo and leos, and util and libmpi can be seen more clearly as compared to (a).

Horizontal positioning. Sankey visualizations place nodes
in “layers”; the spacing between layers is usually consistent,
allowing for an even distribution of horizontal space. Since
a CCT is a hierarchical tree, the derived super graphs
generally do not contain many nodes in the initial layers,
whereas there is also more overlap in the later layers
due to the increase in the number of nodes and edges.
Therefore, even horizontal spacing leads to ineffective use
of space. Since a supernode typically appears in multiple
calling contexts, we define its level as the maximum depth
among all the contexts (paths in the super graph leading
back up to the root), and use supernodes at the same
levels to create “layers” in the Sankey layout. Once levels
have been computed for all supernodes in the super graph,
the horizontal position for lth layer is computed as xl =
max(minx, l

k ·max(nl, nl−1)), where, minx is the minimum
space between adjacent levels, nl denotes the number of
supernodes in level l, and k is a scaling exponent. This
approach places the layers with fewer bars closer to each
other than the layers with larger node count.
Vertical positioning. To assign vertical position to nodes,
we follow the method described by Alemasoom et al. [37].
Similar to their technique, we add dummy nodes and edges
to connect two nodes when they are in nonconsecutive
levels. These intermediate nodes simplify the layout by
providing anchors to long edges, and thus, reduce edge
crossings. The height of the dummy node is equal to the
flow between the original nodes it connects. The approach
computes an optimized layout that minimizes the weighted
sum of distances between each two connected nodes in
consecutive layers. We impose an additional constraint
to this optimization by imposing a minimum vertical
gap between two nodes within the same level to allow
embedding the histogram for process-specific information.
Fig. 5 demonstrates the value of such an optimization.

7.2 Histogram View
To enable process-based visual profiling, CALLFLOW
provides statistical visualization using histograms.
Although common approaches often display measures
such as standard deviation, quartiles, etc., they are useful
mostly when the data comes from a known distribution.

Since there is no reason to assume that run times of parallel
applications would follow a specific distribution, such
measures can be misleading. Instead, CALLFLOW uses
histograms to show the actual distributions. The histogram
view in CALLFLOW shows the sampled distribution of
process-based metrics for a selected supernode. However,
selecting a supernode to highlight its histogram is tedious,
particularly in the exploration phase since it forces the
user to select several nodes before identifying the one with
interesting variation. CALLFLOW addresses this problem
by also showing a mini histogram at the top of every bar
(supernode) in the control flow view (see Fig. 1). The mini
histogram is small enough that it can be placed on every
bar without creating much visual clutter, yet big enough
that the user can quickly identify which supernode has an
interesting distribution. Once an interesting distribution
has been identified, the user can select the corresponding
supernode to view the larger version of the histogram.

To assist the user explore the connection between
slowdowns in MPI ranks and the physical domain, we
display the rank-to-bin mapping in the histogram view.
There are two ways in which the histogram view indicates
this mapping. First, hovering over a bin in the histogram
pops up a tooltip informing the user about the ranks in
the corresponding bin. The second approach is shadow lines,
which map the bins in the histogram to the process/rank
id laid out on an ordered line at the bottom of the
histogram. Fig. 1(b) shows the shadow lines within the
histogram view. Although shadow lines can create visual
clutter, especially for large processor counts, this is in
fact a desired visualization since it indicates that the code
behaves normally. Clutter generally appears when bins in
the histogram contain a broad range of rank, an indication
that the rank id is not correlated to the observed run times.
On the other hand, scenarios without clutter indicate that
certain run times are correlated to the rank id, which can be
a sign of load imbalances and inefficient algorithms.

7.3 Correlation View
Generally, performance bottlenecks can be observed in
many metrics. For example, high cache misses lead to higher
run times, as more time is spent accessing the memory.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, MONTH 2019 9

Analyzing many metrics individually can be cumbersome;
instead, CALLFLOW leverages the correlation between two
metrics to identify performance bottlenecks among different
processes using a correlation view (see Fig. 1), where each
point in the scatter plot represents a process. If there is
a correlation between two metrics, we expect processing
elements to form clusters, whose size informs the extent of
correlation. We also show the best-fit line to aid the user in
observing the trend of the scatter. Hovering over the best-fit
line displays useful statistical measures. The correlation aids
in choosing the bins in the histogram view that cause load
imbalances among processes based on their MPI ranks, and
later compare their respective subgraphs.

7.4 User Interactions
The user can interact with CALLFLOW in several ways.
Hovering over a supernode brings a tooltip with
information about the corresponding supernode. As shown
in Fig. 1(d), the tooltip shows the name of the corresponding
module/function, its inclusive and exclusive metrics.
Additionally, the calling context of the supernode is shown:
the function that calls the highlighted supernode, the entry
functions called in the supernode, and the metrics spent
in those calls. For each calling function, a small square is
shown indicating which node the function belongs to. The
tooltip is useful for a quick inquiry into the functions in a
module (supernode) that consume most resources, as well
as the functions that call those expensive functions.
Selection of a supernode indicates the user’s interest in
finding more information about the corresponding nodes.
All entry functions of the supernode are enumerated, and
the histogram and the correlation views are updated to
correspond to the selected supernode.
Zooming and panning are key to navigating the super
graph smoothly, especially, when it is large. Although
zooming out may reduce the size of the rendered node,
where possible, the legibility of node labels is maintained
by increasing the font size.
Splitting of nodes is an important target operation for
CALLFLOW. A split by entry function requires the user to
choose a function from the list of entry functions. On the
other hand, a split by parent leads to updating the super
graph by replacing the selected supernode with its parents.
In either case, the new super graph requires recomputation
of layout, which although is done in real time, could impose
additional cognitive burden on the user.

To mitigate this burden, we use a consistent naming
scheme for supernodes to provide a consistent context in
the transition. In particular, we concatenate the names of
the (original) supernode and the (new) split supernodes
separated by a hyphen. Fig. 6 shows an example of a
splitting interaction based on two of its entry functions.

CALLFLOW also animates the transitions to make
them easy to follow. Before supernodes transition to new
locations, the edges are removed to prevent the user from
tracking too many elements at once, thus reducing cognitive
stress on the user. Furthermore, the user is more interested
in how the nodes are split and by how much. Hiding the
edges allows the user to concentrate on the nodes. The nodes
are then moved to new locations and new ones are added in

<unknow
n>

libc-2.17.so

libm
onitor.so.0.0.0

lulesh2.0

libc-2.17.so-
lulesh2.0

<unknow
n>

libc-2.17.so

libm
onitor.so.0.0.0

libm
onitor.so.0.0.0-lulesh2.0

(a) (b)

Fig. 6: A node splitting operation is applied on the (a) the
green node to create (b) two purple nodes. The split is based
on the parents of the original node, and the incoming edges
of the new nodes are calculated based on the information
from their parent nodes.

the process. The layout minimizes node movements so that
unchanged nodes remain as static as possible. After nodes
are in the new locations, edges are added back in.
Comparing subgraphs within a super graph is often
needed, e.g., to detect load imbalances, where certain
processes could remain idle during execution. The user can
perform a brushing action on the histogram, and the graph
view is split into two, showing the two super graphs (see
Fig. 7) associated with the two process groups. The brushed
bins constitute the processes that make up the top super
graph and the non-brushed bins make up the processes of
the bottom super graph. Furthermore, CALLFLOW allows
users to color the node based on the difference to detect
variations in their exclusive metrics.

8 CASE STUDIES

We present two case studies on understanding profiles of
large-scale scientific applications to show the impact of
CALLFLOW at Lawrence Livermore National Laboratory.
Both these studies were led by our collaborators, who
are computational scientists, and work closely with
application developers on performance analysis and
scaling optimization of scientific codes. These experts
have extensive experience in performance optimization of
large-scale parallel applications, and have worked with
other visualization tools for performance analysis, such as
HPCToolkit [2], Scalasca [6], and Vampir [52]. The following
describes the studies and summarizes some of the informal
feedback provided by the experts.

8.1 Load Balancing of LULESH
LULESH [53] is a proxy application used for modeling the
performance of large hydrodynamics simulations. LULESH
represents the numerical algorithms, data motion, and
programming style typical of scientific applications, and
is used for studying the performance of different parallel
programming models and architectures. Here, we use
CALLFLOW to understand the performance of LULESH
when implemented using Adaptive MPI (AMPI) [54]
for solving a problem that represents multimaterial
systems. AMPI is a paradigm of MPI applications with
overdecomposition, i.e., multiple MPI ranks per process
instead of the commonly used one rank per process.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, MONTH 2019 10

Fig. 7: Understanding the impact of over-decomposition on LULESH. (a) MPI-style execution with 1 MPI rank per process:
most time spent in LULESH internals, MPI/libpsm, AMPI internals (tmp bar), and C-library. (b) With over-decomposition,
time spent in most modules reduces, but histograms of several modules show significant load imbalance.

m

47s 170s

Fig. 8: Analysis of load imbalance in LULESH by dividing
the processes based on the time spent in LULESH internals.
The splitting shows that processes with light load for
LULESH internals (bottom view) spend significant time
in MPI/libpsm, AMPI, and C-library, while remaining
processes (top view) spend minimal time in these modules.

Histogram for lulesh2.0

79s44s

Fig. 9: Impact of load balancing for LULESH (bar heights
scaled as Fig. 7): total runtime decreases and time spent in
libc and MPI/libpsm is reduced. The load for LULESH
internals is more evenly distributed across processes.

Fig. 7(a) visualizes an execution of the AMPI version
of LULESH that emulates the traditional MPI model where
one MPI rank is placed on every process in the system. By
coloring the nodes based on exclusive runtime, CALLFLOW
helps identify the distribution of time among LULESH
internals, AMPI framework, and other modules. We find
that, on average, LULESH internals and MPI/libpsm (the
lower-level messaging libraries) account for the majority
of runtime, and exhibit load imbalance among processes.
Surprisingly, ampi and libc also show significant runtime.

Significant time spent in MPI/libpsm and the
load imbalance across processes suggest that AMPI’s
ability to overdecompose MPI ranks and adaptively
overlap computation with communication can improve
performance. To test this hypothesis, we run eight logical
MPI ranks on every process in the next experiment. This
results in a reduction in the execution time by 44%
as highlighted by the difference in the height of the
root module in Figs. 7(a) and 7(b). The module view
eases the task of identifying the code regions that benefit
from overdecomposition. Unexpectedly, the time spent
in the AMPI runtime decreases despite the fact that an

eight-fold overdecomposition leads to eight times more
messages and scheduling overhead. Further, most of this
improvement appears to come from less time spent driving
the communication in MPI/libpsm. Since both AMPI and
MPI/libpsm are large and complex frameworks, their
respective nodes in CALLFLOW abstract a large number
of CCT nodes across many levels and contexts. Therefore,
arriving at these insights from a traditional CCT display
would require substantial effort as well as an initial guess to
focus on these two components. Instead, CALLFLOW’s super
graph view immediately highlights the most important
differences in the runtimes effectively.

Despite the reduced runtime, the histogram for most
modules (see Fig. 7(b)) appear to be heavily skewed. To
explore this further, we split the processes based on the
time spent in LULESH (see Fig. 8). The split view reveals
that only the processes with light load for LULESH internals
spend a large amount of time in MPI/libpsm, ampi, and
libc. Discovering such a high-level correlation among
different modules is difficult using traditional CCT tools.
In this case, these results inform the need for load balancing
the work done by the LULESH across processes.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, MONTH 2019 11

(a) 256 processor run (b) 1024 processor run

Fig. 10: Comparison of Miranda execution on 256 and 1024 processors; height and color of a bar represent the inclusive
and exclusive time spent in the module. These visualizations help identify the modules in which significant time is spent
in the execution, and reveal that the increase in the exclusive time spent in the libpsm module is the primary reason for
lower performance on 1024 processors.

Fig. 11: Splitting Hypre allows identifying its components
responsible for performance-degrading communication.

Next, we enable load balancing in AMPI, which resulted
in 30% better performance. The resulting profile (see
Fig. 9), helps understand that the performance benefits are
driven by more evenly load for LULESH internals among
processes. The view also shows that the time spent in ampi,
MPI/libpsm, and libc is reduced significantly.

8.2 Scaling Performance of Miranda

Miranda [13] is a large-scale parallel code that simulates
radiation hydrodynamics for direct numerical solution or
large-eddy simulation. In order to simulate large-scale
scenarios, it is desirable that Miranda exhibits good weak
scaling, i.e., execution time should not increase significantly
when more processors are used to solve larger problems.
However, Miranda developers have observed poor scaling
behavior for Miranda. To investigate the causes of degraded
performance, we obtained CCT profiles of Miranda at two
different process counts: 256 processes and 1024 processes,
and noticed that even though the problem size per process
is kept fixed, the execution time increases by more than 30%.

Fig. 10(a) shows the CALLFLOW visualization for a
Miranda execution on 256 processes. For performance
experts analyzing the behavior of Miranda, who are
not familiar with Miranda, the visualization provides a
high-level overview of the control flow of Miranda, and the
dependencies and relationships between different modules.
It is typically difficult to obtain such information from

MPI ranks

180s 220s

Fr
eq

ue
nc

y
Fig. 12: Histogram for time spent in the libpsm module:
the distribution is normal and not heavily skewed; the
bin-to-MPI rank connections reveal that lower-ranked MPI
processes are more likely to have higher libpsm time.

CCTs because hundreds of functions, often with unfamiliar
names, are used in production codes. In contrast, it is
tractable for performance experts to get familiar with
program modules and commonly used external libraries.
Further, coloring the modules by exclusive time spent in
them helps identify the modules that make up most of
the overall execution time. In this case, three modules
stand out: physics (Miranda’s science code), Hypre
(a linear solvers library), and libpsm (the lower-level
messaging library underneath MPI). Fig. 10 also shows a
juxtaposed comparison of profiles from 256 process and
1024 process executions. To facilitate such a comparison,
we use CALLFLOW’s feature to rescale the height of the
root modules based on their inclusive time (which is also
the total execution time) and use a common time range for
coloring the two super graphs based on the exclusive time.
The contrast in the color of the libpsm module in the two
figures immediately identifies it as one of the culprits for
performance degradation. However, the visualization also
reveals that most of the time spent in the libpsm library
can be traced back to the Hypre module, implying that the
cause of poor scaling of Miranda is poor scaling of the latter.

To explore the components in Hypre that are responsible
for the time spent in libpsm, the nodes are further split
to reveal high-level control flow and inefficiency sources
inside the Hypre library (see Fig. 11). The module-based
split reduces the work that a domain expert would need to
do to identify that utility and struct_mv components
of Hypre invoke point-to-point communication calls in MPI
that result in half of the increased libpsm time. Similarly,
we find that the collective calls made by the struct_mv

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, MONTH 2019 12

module causes the remaining performance degradation.
When the time spent in messaging affects the

performance, experts tend to analyze the time distribution
across processes to find the root causes. With CALLFLOW,
such a histogram for libpsm (or for any other module)
can be obtained simply (see Fig. 12). We observe that for
the Miranda execution on 1024 processes, the distribution
of time spent in libpsm is not heavily skewed and
has a narrow time range, suggesting that the increased
communication volume is likely the cause of the increased
time. If load imbalance or system noise would have been the
culprit, a more skewed time distribution would be obtained.
Finally, the bin-to-MPI rank connections shown below the
histogram reveal that lower-ranked MPI processes are more
likely to spend higher time in the libpsm module. Such
an insight would have been difficult to obtain in traditional
tools and can help identify systematic-bias in the code.

9 CONCLUSION

CALLFLOW is a visualization tool for exploring the
calling context trees (CCTs) of application codes,
particularly useful for large-scale parallel codes. Through
an easy-to-understand flow-based visual metaphor in the
form of Sankey diagrams, CALLFLOW helps the users
identify performance bottlenecks in the code effectively,
leading to potential optimizations and improved overall
throughput of applications. Catering specifically to the
target data, CALLFLOW customizes and enhances the layout
of Sankey diagrams, and uses multiple linked views to
provide a holistic exploration of CCTs. Through a set of
interactive operations on the underlying graph, CALLFLOW
provides both a high-level, system-oriented overview of
CCTs as well as the ability to drill down to detailed
information, making, for the first time, large-scale CCTs
accessible and explorable. CALLFLOW has been developed
in close collaboration with domain scientists, and has
already garnered significant interest in our institute. To
expand accessibility, CALLFLOW is publicly released under
MIT License and a domain-specific publication establishing
its larger impact in the HPC community is forthcoming. In
this paper, we demonstrate the effectiveness of CALLFLOW
through investigation of production codes, and delivering
insights leading to their improvement.

Despite the initial successful use cases and positive
feedback from the domain experts, there exist several
avenues for further research and development. Since
the layout of Sankey diagrams is key to the easy
navigation of the visualization, we would like to explore
and evaluate other layout optimization techniques. For
example, PQR-trees [55], may produce more user-friendly
layouts, at an additional but affordable cost. Using
constraint programming for graph layouts, as suggested
by IPSep-CoLa [56] and Zarate et al. [57] may be another
avenue. With respect to stable changes in the layout for
animation, the DynaDAG approach [58], appears attractive,
although it may require modifications to support large-scale
graphs. CALLFLOW currently only loads one dataset a time.
However, simulation codes typically run under different
conditions and it is necessary to compare the performance
under these conditions. We plan to extend CALLFLOW

to support multiple datasets and incorporate animation
to transition between different data. This would also
support streaming data. We would also like to support
recursive callings between functions as many applications
in HPC uses such techniques. Finally, although the
paper concentrates on parallel applications, the techniques
described in this paper may also be applied to analyze
hierarchical and time sequence data.

10 DISCUSSION

Most profiling visualization tools use UML sequence
diagrams, and adopt a node-link visualization layout to
visualize the CCT. Although, node-link representation is
intuitive, they quickly become difficult to explore when
the number of components becomes too large. On the
contrary, CALLFLOW transforms the original CCT into
a super graph, which reduces the number of nodes
to be visualized and presents the control flow of the
application as code modules. Since grouping nodes into
modules could introduce nodes having multiple call paths
or nodes with multiple parents, hierarchical space-filling
visualization layouts are not suitable for exploration.
Additionally, since the hierarchy is not predetermined
but instead emerges dynamically depending on the given
data and analysis tasks, static visualization approaches do
not provide exhaustive exploration. CALLFLOW supports
flexible splitting of modules according to the parent
nodes or by the function group (i.e., all collective or all
point-to-point messages within the MPI library).

CALLFLOW was designed for a critical, yet a somewhat
specific problem of analyzing call graphs. Although
the results of this research may not appear directly
generalizable, our attempt has been to focus instead on
the idea of transferability [46] to other possibly similar
domains. The data abstractions presented in Section 6, e.g.,
the principle of node splitting, may support transferring our
specific design and results to other application domains that
deal with distributing shared resource across hierarchical
entities, e.g., certain types of temporal evolution [59].
Another example is nested schedules of large construction
projects, which naturally follow the same pattern of
high-level phases, i.e., excavation, framing, etc., and with
more detailed breakdowns, each item with corresponding
time and money estimates. The key insight from CALLFLOW
is that the combination of the hierarchical representation,
i.e., trees, with graph metaphors (combining low-level
tree nodes) can provide powerful insights. Continuing the
construction example, one may consider all jobs requiring
specific skills or materials to form a graph indicating
possible bottlenecks. Nevertheless, the detailed linked
views, i.e., the code view in our application, would be
application specific. Similarly, the exact layout of the Sankey
diagram could be optimized according to specific needs.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory (LLNL) under contract DE-AC52-07NA27344.
The UC Davis researchers are also supported in part by the
Department of Energy through grant DE-SC0014917.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, MONTH 2019 13

REFERENCES

[1] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A
call graph execution profiler,” SIGPLAN Not., vol. 17, no. 6, pp.
120–126, 1982.

[2] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin,
J. Mellor-Crummey, and N. R. Tallent, “HPCToolkit: Tools for
performance analysis of optimized parallel programs,” Concurr.
Comput. : Pract. Exper., vol. 22, no. 6, pp. 685–701, 2010.

[3] K. Ali and O. Lhoták, “Application-only call graph construction,”
in European Conf. on Object-Oriented Prog., 2012, pp. 688–712.

[4] D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call
graph construction in object-oriented languages,” ACM SIGPLAN
Notices, vol. 32, no. 10, pp. 108–124, 1997.

[5] D. Grove and C. Chambers, “A framework for call graph
construction algorithms,” ACM Trans. on Programming Languages
and Systems (TOPLAS), vol. 23, no. 6, pp. 685–746, 2001.

[6] M. Geimer, F. Wolf, B. J. Wylie, E. Ábrahám, D. Becker, and
B. Mohr, “The SCALASCA performance toolset architecture,”
Concurr. Comput. : Pract. Exper., vol. 22, no. 6, pp. 702–719, 2010.

[7] B. Mohr and F. Wolf, “KOJAK – A tool set for automatic
performance analysis of parallel programs,” in Euro-Par 2003
Parallel Processing, 2003, pp. 1301–1304.

[8] S. S. Shende and A. D. Malony, “The TAU parallel performance
system,” Int. J. High Perform. Comput. Appl., vol. 20, no. 2, pp.
287–311, 2006.

[9] B. Johnson and B. Shneiderman, “Tree-Maps: A space-filling
approach to the visualization of hierarchical information
structures,” in Proc. of the 2nd Conf. on Visualization. IEEE
Computer Society Press, 1991, pp. 284–291.

[10] J. B. Kruskal and J. M. Landwehr, “Icicle plots: Better displays for
hierarchical clustering,” The American Statistician, vol. 37, no. 2, pp.
162–168, 1983.

[11] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware
performance counters with flow and context sensitive profiling,”
SIGPLAN Not., vol. 32, no. 5, pp. 85–96, 1997.

[12] P. Moret, W. Binder, A. Villazón, D. Ansaloni, and A. Heydarnoori,
“Visualizing and exploring profiles with calling context ring
charts,” Softw: Pract. Exper., vol. 40, no. 9, pp. 825–847, 2010.

[13] W. H. Cabot, A. W. Cook, P. L. Miller, D. E. Laney, M. C. Miller,
and H. R. Childs, “Large-eddy simulation of rayleigh–taylor
instability,” Physics of Fluids, vol. 17, no. 9, p. 091106, 2005.

[14] J. Abello, F. Van Ham, and N. Krishnan, “ASK-GraphView: A large
scale graph visualization system,” IEEE Trans. on Vis. and Comp.
Graph., vol. 12, no. 5, pp. 669–676, 2006.

[15] I. Herman, G. Melançon, and M. S. Marshall, “Graph visualization
and navigation in information visualization: A survey,” IEEE
Trans. on Vis. and Comp. Graph., vol. 6, no. 1, pp. 24–43, 2000.

[16] Q. V. Nguyen and M. L. Huang, “A space-optimized tree
visualization,” in IEEE Symp. on Info. Vis., 2002, pp. 85–92.

[17] C. Plaisant, J. Grosjean, and B. B. Bederson, “Spacetree: Supporting
exploration in large node link tree, design evolution and empirical
evaluation,” in Proc. of the IEEE Symp. on Info. Vis., 2002, pp. 57–64.

[18] T. Munzner and P. Burchard, “Visualizing the structure of the
world wide web in 3d hyperbolic space,” in Proc. of the First Symp.
on Virtual Reality Modeling Language. ACM, 1995, pp. 33–38.

[19] G. G. Robertson, J. D. Mackinlay, and S. K. Card, “Cone trees:
Animated 3d visualizations of hierarchical information,” in Proc. of
the Conf. on Human Factors in Computing Systems, 1991, pp. 189–194.

[20] K. E. Isaacs, A. Gimnez, I. Jusufi, T. Gamblin, A. Bhatele,
M. Schulz, B. Hamann, and P.-T. Bremer, “State of the Art
of Performance Visualization,” in EuroVis - STARs, R. Borgo,
R. Maciejewski, and I. Viola, Eds. The Eurographics Association,
2014.

[21] T. D. LaToza and B. A. Myers, “Visualizing call graphs,” in
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC)., 2011.

[22] M. Ghoniem, J.-D. Fekete, and P. Castagliola, “On the readability
of graphs using node-link and matrix-based representations: A
controlled experiment and statistical analysis,” Info. Vis., vol. 4,
no. 2, pp. 114–135, 2005.

[23] H. Bhatia, N. Jain, A. Bhatele, Y. Livnat, J. Domke, V. Pascucci,
and P.-T. Bremer, “Interactive investigation of traffic congestion on
fat-tree networks using TreeScope,” Comp. Graph. Forum, vol. 37,
no. 3, pp. 561–572, 2018.

[24] L. DeRose, B. Homer, and D. Johnson, “Detecting application load
imbalance on high end massively parallel systems,” in Euro-Par
2007 Parallel Processing, 2007, pp. 150–159.

[25] H. T. Nguyen, L. Weit, A. Bhatele, T. Gamblin, D. Boehme,
M. Schulz, K.-L. Ma, and P.-T. Bremer, “VIPACT: A visualization
interface for analyzing calling context trees,” in Proc. of the 3rd Int.
Work. on Visual Perf. Analysis. IEEE Press, 2016, pp. 25–28.

[26] J. Bohnet and J. Döllner, “Visual exploration of function call graphs
for feature location in complex software systems,” in Proceedings
of the 2006 ACM symposium on Software visualization, 2006.

[27] C. Xie, W. Xu, and K. Mueller, “A visual analytics framework for
the detection of anomalous call stack trees in high performance
computing application,” IEEE Trans. on Vis. and Comp. Graph., 2019.

[28] M. Burch, C. Müller, G. Reina, H. Schmauder, M. Greis, and
D. Weiskopf, “Visualizing dynamic call graphs,” in Vision,
Modeling and Visualization, M. Goesele, T. Grosch, H. Theisel,
K. Toennies, and B. Preim, Eds. The Eurographics Association,
2012.

[29] B. Johnson, “TreeViz: Treemap visualization of hierarchically
structured information,” in Proc. of the Conf. on Human Factors in
Computing Systems, 1992, pp. 369–370.

[30] B. Shneiderman and M. Wattenberg, “Ordered treemap layouts,”
in Proc. of the IEEE Symp. on Info. Vis., 2001, pp. 73–78.

[31] A. Adamoli and M. Hauswirth, “Trevis: A context tree
visualization & analysis framework and its use for classifying
performance failure reports,” in Proc. of the 5th Int. Symp. on
Software Visualization. ACM, 2010, pp. 73–82.

[32] G. Sander, “Graph layout through the vcg tool,” in Graph Drawing.
Springer Berlin Heidelberg, 1995, pp. 194–205.

[33] F. Balmas, “Displaying dependence graphs: a hierarchical
approach,” J. Softw. Maint. Evol., vol. 16, no. 3, pp. 151–185, 2004.

[34] S. Devkota and K. E. Isaacs, “CFGExplorer: Designing a visual
control flow analytics system around basic program analysis
operations,” in Comp. Graph. Forum, vol. 37, no. 3, 2018, pp.
453–464.

[35] M. Schmidt, “The sankey diagram in energy and material flow
management,” J. Industrial Ecology, vol. 12, no. 1, pp. 82–94, 2008.

[36] K. Soundararajan, H. K. Ho, and B. Su, “Sankey diagram
framework for energy and exergy flows,” Applied Energy, vol. 136,
pp. 1035–1042, 2014.

[37] H. Alemasoom, F. Samavati, J. Brosz, and D. Layzell, “EnergyViz:
An interactive system for visualization of energy systems,” Vis.
Comput., vol. 32, no. 3, pp. 403–413, 2016.

[38] M. Ogawa, K.-L. Ma, C. Bird, P. Devanbu, and A. Gourley,
“Visualizing social interaction in open source software projects,”
in 6th Int. Asia-Pacific Symp. on Visualization, 2007, pp. 25–32.

[39] K. Wongsuphasawat and D. Gotz, “Outflow: Visualizing patient
flow by symptoms and outcome,” in IEEE VisWeek Work. on Visual
Analytics in Healthcare, 2011, pp. 25–28.

[40] C.-F. Wang, J. Li, K.-L. Ma, C.-W. Huang, and Y.-C. Li, “A visual
analysis approach to cohort study of electronic patient records,” in
IEEE Int. Conf. on Bioinformatics and Biomedicine, 2014, pp. 521–528.

[41] J. J. V. Wijk, “Bridging the gaps,” IEEE Computer Graphics and
Applications, vol. 26, no. 6, pp. 6–9, Nov 2006.

[42] A. J. Pretorius and J. J. Van Wijk, “What does the user want to see?:
What do the data want to be?” Information Visualization, vol. 8,
no. 3, pp. 153–166, 2009.

[43] M. Brehmer, J. Ng, K. Tate, and T. Munzner, “Matches, mismatches,
and methods: Multiple-view workflows for energy portfolio
analysis,” IEEE Trans. on Vis. and Comp. Graph., vol. 22, no. 1, pp.
449–458, 2016.

[44] R. A. Amar and J. T. Stasko, “Knowledge precepts for design and
evaluation of information visualizations,” IEEE Trans. on Vis. and
Comp. Graph., vol. 11, no. 4, pp. 432–442, 2005.

[45] T. Munzner, “A nested model for visualization design and
validation,” IEEE Trans. on Vis. and Comp. Graph., vol. 15, no. 6,
pp. 921–928, 2009.

[46] M. Sedlmair, M. Meyer, and T. Munzner, “Design study
methodology: Reflections from the trenches and the stacks,” IEEE
Trans. on Vis. and Comp. Graph., vol. 18, no. 12, pp. 2431–2440, 2012.

[47] B. Shneiderman and C. Plaisant, “Strategies for evaluating
information visualization tools: Multi-dimensional in-depth
long-term case studies,” in Proceedings of the 2006 AVI Workshop
on BEyond Time and Errors: Novel Evaluation Methods for Information
Visualization, ser. BELIV ’06. New York, NY, USA: ACM, 2006,
pp. 1–7.

[48] D. Lloyd and J. Dykes, “Human-centered approaches in
geovisualization design: Investigating multiple methods through
a long-term case study,” IEEE Trans. on Vis. and Comp. Graph.,
vol. 17, no. 12, pp. 2498–2507, Dec 2011.

TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. XXX, NO. XXX, MONTH 2019 14

[49] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, “A
systematic literature review of software visualization evaluation,”
Journal of Systems and Software, vol. 144, pp. 165–180, 2018.

[50] L. Adhianto, J. Mellor-Crummey, and N. R. Tallent, “Effectively
presenting call path profiles of application performance,” in 2010
39th Int. Conf. on Parallel Processing Workshops, 2010, pp. 179–188.

[51] W. McKinney, “Data structures for statistical computing in
python,” in Proc. of the 9th Python in Science Conf. (SciPy), 2010,
pp. 51–56.

[52] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber,
H. Mickler, M. S. Müller, and W. E. Nagel, “The vampir
performance analysis tool-set,” in Tools for High Performance
Computing. Springer Berlin Heidelberg, 2008, pp. 139–155.

[53] I. Karlin, A. Bhatele, B. L. Chamberlain, J. Cohen, Z. Devito,
M. Gokhale, R. Haque, R. Hornung, J. Keasler, D. Laney, E. Luke,
S. Lloyd, J. McGraw, R. Neely, D. Richards, M. Schulz, C. H.
Still, F. Wang, and D. Wong, “LULESH programming model
and performance ports overview,” Lawrence Livermore National
Laboratory, Tech. Rep. LLNL-TR-608824, 2012.

[54] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé, “Performance
evaluation of adaptive MPI,” in Proc. of 11th ACM SIGPLAN Symp.
on Principles and Practice of Parallel Programming, 2006, pp. 12–21.

[55] J. R. Marchete Filho and C. Silva, “Using PQR-trees for reducing
edge crossings in layered directed acyclic graphs,” in Workshop of
Works in Progress (WIP) in SIBGRAPI (XXVI Conference on Graphics,
Patterns and Images), A. Frery and S. Musse, Eds., 2013.

[56] T. Dwyer, Y. Koren, and K. Marriott, “IPSep-CoLa: An incremental
procedure for separation constraint layout of graphs,” IEEE Trans.
on Vis. and Comp. Graph., vol. 12, no. 5, pp. 821–828, 2006.

[57] D. C. Zarate, P. L. Bodic, T. Dwyer, G. Gange, and P. Stuckey,
“Optimal sankey diagrams via integer programming,” in IEEE
Pacific Vis. Symp., April 2018, pp. 135–139.

[58] S. C. North, “Incremental layout in DynaDAG,” in Graph Drawing.
Springer Berlin Heidelberg, 1995, pp. 409–418.

[59] M. Monroe, R. Lan, H. Lee, C. Plaisant, and B. Shneiderman,
“Temporal event sequence simplification,” IEEE Trans. on Vis. and
Comp. Graph., vol. 19, no. 12, pp. 2227–2236, Dec 2013.

Huu Tan Nguyen received his Master’s degree
in Computer Science at the University of
California, Davis in 2017. He obtained his
Bachelor’s degree in Computer Science and
Engineering at the University of California,
Davis in 2015. His research interests include
information visualization and data analysis. He
is currently with Keysight Technologies as a
Software Engineer.

Abhinav Bhatele is an assistant professor in
the department of computer science at the
University of Maryland, College Park. Previously,
he was a senior computer scientist in the Center
for Applied Scientific Computing at Lawrence
Livermore National Laboratory. His research
interests are broadly in systems and networks,
with a focus on parallel computing and big
data analytics. He has published research in
programming models and runtimes, network
design and simulation, applications of machine

learning to parallel systems, and on analyzing, modeling and optimizing
the performance of parallel software and systems.

Abhinav received a B.Tech. degree in Computer Science and
Engineering from I.I.T. Kanpur, India in May 2005, and M.S. and
Ph.D. degrees in Computer Science from the University of Illinois at
Urbana-Champaign in 2007 and 2010 respectively. Abhinav was an
ACM-IEEE CS George Michael Memorial HPC Fellow in 2009. He has
received best paper awards at Euro-Par 2009, IPDPS 2013 and IPDPS
2016. Abhinav was selected as a recipient of the IEEE TCSC Young
Achievers in Scalable Computing award in 2014, and the LLNL Early
and Mid-Career Recognition award in 2018.

Nikhil Jain is a research scientist at Nvidia,
inc. Previously, he was a research scientist at
Lawrence Livermore National Laboratory.
He was Sidney Fernbach postdoctoral
fellow in the Center for Applied Scientific
Computing at Lawrence Livermore National
Laboratory. He works on topics related to
parallel computing including networks, scalable
application development, parallel algorithms,
communication optimization, and interoperation
of languages. Nikhil received a Ph.D. degree in

Computer Science from the University of Illinois at Urbana-Champaign
in 2016, and B.Tech. and M.Tech degrees in Computer Science and
Engineering from I.I.T. Kanpur, India in May 2009.

Suraj kesavan is a 2nd year graduate student
studying computer science at University of
California, Davis. He obtained his bachelor’s
degree from National Institute of Technology,
Tiruchirappalli. His current research interests
include information visualization and data
analytics.

Harsh Bhatia is a Computer Scientist at the
Center for Applied Scientific Computing at
Lawrence Livermore National Laboratory. His
research spans the broad area of visualization
and computational topology, with special focus
on scientific data. Harsh is also interested in
ML-based approaches for scientific applications.
Prior to joining LLNL, Harsh earned his Ph.D.
from Scientific Computing & Imaging Institute at
the University of Utah in 2015, where he worked
on the feature extraction for vector fields.

Todd Gamblin is a computer scientist in
the Center for Applied Scientific Computing
at Lawrence Livermore National Laboratory.
His research focuses on scalable tools for
measuring, analyzing, and visualizing parallel
performance data. For this work, he received
an Early Career Research Award from the U.S.
Department of Energy in 2014. In addition to
his research, Todd leads LLNLs HPC Developer
Ecosystem team, and he is the creator of Spack,
a popular HPC package management tool. Todd

has been at LLNL since 2008. He received Ph.D. and M.S. degrees
in Computer Science from the University of North Carolina at Chapel
Hill in 2009 and 2005. He received his B.A. in Computer Science and
Japanese from Williams College in 2002.

Kwan-Liu Ma , an IEEE Fellow, is a
distinguished professor of computer science at
the University of California, Davis. His research
interests include visualization, computer
graphics, high-performance computing, and
human-computer interaction. He has served as
a papers co-chair for SciVis, InfoVis, EuroVis,
PacificVis, and Graph Drawing, as an associate
editor of IEEE TVCG (2007-2011) and IEEE
CG&A (2007-2013), and as an AEIC of IEEE
CG&A (2013-2019). Contact him via email:

ma@cs.ucdavis.edu.

Peer-Timo Bremer is a member of technical
staff and project leader at the Center for
Applied Scientific Computing (CASC) at the
Lawrence Livermore National Laboratory (LLNL)
and Associated Director for Research at the
Center for Extreme Data Management, Analysis,
and Visualization at the University of Utah. Prior
to his tenure at CASC, he earned a Ph.D. in
Computer science at the University of California,
Davis in 2004 and a Diploma in Mathematics and
Computer Science from the Leibniz University in

Hannover, Germany in 2000.

	Introduction
	Performance Profiles
	Related Work
	Design Methodology
	Domain Problem Characterization
	Data Type Abstraction and Operations
	Filtering of CCT Nodes
	Aggregation of CCT Nodes
	Splitting of CCT Nodes

	Visual Design of CallFlow
	Control Flow View
	Histogram View
	Correlation View
	User Interactions

	Case Studies
	Load Balancing of LULESH
	Scaling Performance of Miranda

	Conclusion
	Discussion
	References
	Biographies
	Huu Tan Nguyen
	Abhinav Bhatele
	Nikhil Jain
	Suraj kesavan
	Harsh Bhatia
	Todd Gamblin
	Kwan-Liu Ma
	Peer-Timo Bremer

